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SUMMARY

Phenomena associated with long range propagation of sound over irregular topog-

raphy motivated the research work which was described in this thesis. Specifically,

the goal of the work was to analyze the diffraction effects which would occur near

the tops of hills and ridges. From this particular goal, the research work evolved

into a study of the diffraction of a high frequency plane wave due to its grazing of a

two-dimensional curved surface of finite impedance. Laboratory scale models were

constructed and measurements were made of the field on, above, and behind either of

two curved surfaces possessing distinctly different impedances; that is, one was soft

while the other was hard. The experimental technique consisted of simultaneously

measuring the pressure at a reference point and at a field point due to a transient

pulse generated by an electric spark. The pressure waveforms were digitized and

processed. As described in the thesis, the ratio of the discrete Fourier transforms

of the two waveforms provided an estimate of the insertion loss between them. The

results of the measurements were compared with the predictions of a theory which

was derived by Pierce using the method of Matched Asymptotic Expansions (MAE).

The predictions relied upon the experimental evaluation of the impedance of each

surface at grazing angles of incidence. This evaluation was achieved by a fairly stan-

dard technique involving empirical models of various generic types of surfaces. An

example was shown of the important role that the structural intricacies of a surface

play in the determination of an appropriate model. The comparison between the

measurements and predictions clearly indicated that the theory gives an excellent
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description of the field anywhere near a curved surface. Further, with a simple

modification, the theory was also shown to give nearly as good of a description of

the field surrounding a curved surface even at distances far behind the surface yet

near the line of sight.
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CHAPTER I

INTRODUCTION

The principal goal of the research discussed in this thesis was to gather and analyze

experimental data that would be useful in understanding the effects of irregular to-

pography on long range sound propagation in the atmosphere. At the outset, it was

assumed that the most interesting and influential effects on such propagation occur

near the tops of hills or ridges located in the terrain. In the vicinity of these tops,

rays associated with the propagating sound wave are incident at angles near grazing,

particularly when the source of the wave is distant enough that the incident field is a

nearly vertical plane wave. A real example of such circumstances occurs when a low

flying aircraft produces an acoustic disturbance which propagates over distant hilly

terrain. It can be shown that an analogous situation involving flat ground occurs

when wind or temperature gradients exist in the atmosphere. 1 Curved ray paths

and possibly multiple shadow zones are present in both fields. In either situation,

the interaction between the impinging sound field and the surface topography is

expected to be complex. In light of this expectation, a prototype laboratory scale

model of a single, cylindrical ridge was constructed of plywood. The expectation
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was that a knowledge of the basic effectsof a singleridge on the incident fieldcould

be used to construct the fieldover more complex topography. Therefore, experi-

ments were designed to measure the insertionlosson, above, and behind the single

scale model ridge. A spark generator provided an acoustical point source which

was located many wavelengths away from the ridge. The frequency content of a

generated waveforrn was such that kR _ 1, where R was the radius of curvature

of the scale model ridge. The large value of k]_ was in keeping with the typically

large scalesassociated with hillsor ridges in realterrain.

In a related vein,the duration of a typicalwaveform was approximately 40/_s.

This short duration made itpossible to identifythe desired direct,reflected,and

diffractedwaveforms separate from other spurious waveforms (reflectedfrom walls

and objects in the lab room). The insertionlosswas calculated as the ratio of the

discreteFourier transform of a fieldwaveform to that of a referencewaveform, after

appropriate correctionsfor spreading and absorption losses.In thiscontext, a field

waveform typicallyreferred to a measured waveform which had been reflectedor

diffractedfrom a ridge,while a referencewaveform referredto a waveform measured

prior to artyinteractionwith a ridge.

An important parameter in such propagation problems isthe specificacoustic

impedance of the surface of the topography. Two types of surfaces were used in

the scale model experiments; they were a plywood curved surface and a carpet-

on-plywood curved surface. Itwas found that these two surfaces could reasonably

represent a hard and soft ground, respectively.An important part of the experi-

ments was the quantitative evaluation of the specificacoustic impedance of the two
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surfaces used on the model ridge. The evaluation was made by assuming that the

impedance of the surface when curved was equivalent to that when the surface was

flat. Then, measurements were made of the field over flat table tops which had
¢

surfaces nearly identical to those of the model ridge. The theory for sound prop-

agation over a fiat impedance plane was employed along with empirical models of

hard and soft surfaces to deduce the impedance from measurements of the pressure

at locations just above the surface. In particular, a model developed by Delany

and Bazley for the impedance of fibrous absorbent materials and an asymptotic

version of a five parameter model developed by Attenborough were used to describe

the carpet-on-plywood and plywood surfaces, respectively, in terms of an effective

flow resistance parameter, a. The results indicated that values in the range of

0.8-1.6 × 106 kg/(m 3.s)adaquately described the carpet-on-plywood surface while

a value of 120 × 106 kg/(m 3.s)sufficedfor the plywood surface.

Subsequent to the measurements over the flattable top surfaces,measurements

of the fieldon, above, and behind the model curved surfaceswere made. Specifically,

the pressure was measured on the curved surfaces as well as along verticallines

located 0, 63, 120, 200, and 400 cm downstream from the apices of the model curved

surfaces. These distances were chosen knowing that the radius of curvature, R, of

the model surfaceswas approximately 2.5m. The spark source was located roughly

R meters in front of the model surfaces.The generated acoustic pulse was typically

40#s in duration with a peak amplitude of approximately 130Pa at 1meter. A

discrete Fourier transform of such a captured pulse revealed a broad frequency

band such that kR >> 1.
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The results of the experiments were compared to the computational results

of the asymptotic theory for diffraction over curved surfaces of finite impedance.

The theory was based upon the work of V.A. Fock, who investigated the diffracted

field of an electromagnetic wave propagating over a curved body. A.D. Pierce re-

developed the theory in an acoustic context, and employed the method of Matched

Asymptotic Expansions to produce a solution which matched the impedance bound-

ary condition at the surface and which asymptotically approached the geometrical

(ray) acoustics solution at locations not too far above the surface. Highlights of

the solution include an application of the method of steepest descent to produce a

approximate solution in terms of the field behind a rigid knife-edge plus two slowly

varying so-called background terms. The background terms were shown to vanish at

large distances downstream from the apex, thus leaving the functional form of the

solution equivalent to that of the solution for the field far bahind a rigid knife-edge.

However, it was shown that, at such distances, a dimensionless height involved in

the solution had to be replaced by another more appealing dimensionless height in

order for the solution to yield a good comparison with experimental data. This

result did not invalidate the theory because the original solution was derived under

the assumption that the listener was close to the ridge. In fact, the theory com-

pared excellently with experimental data at distances from the apex which were

less than R. Further, an application of Cauchy's Residue theorem resulted in an

approximate form of the solution in terms of an infinite residue series often referred

to as a creeping wave series. Though thought to be valid only in the shadow zone
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of a curved surface, the series solution was shown to give excellent results well into

the lower bright zone.

This thesis was assembled so that the reader would be first introduced to some

history and then to the theory. Subsequently, the laboratory, and the preliminary

and main experiments, and their results, were described in detail. The main body

of the thesis was concluded by a short summary section of conclusions and recom-

mendations. Several appendices, which contain certain details of the work, were

included as well.
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CHAPTER II

A GLIMPSE AT THE PAST

This thesis contains the results of a study of the propagation of sound over a

curved surface of finite impedance. Of particular interest were the diffraction effects

inherent in such a propagation. It so happens that in the area of wave propagation

over curved surfaces, a majority of the work done previously has dealt with electro-

magnetic waves. For this reason, much of the discussion of previous work, whether

theoretical or experimental, involved electromagnetic waves. However, the similar

wave mechanics involved in either propagation made all of the discussed work useful

and pertinent. In fact, the foundation of the current theory of interest was the re-

sult of a careful translation between electromagnetic and acoustic variables from a

theory derived for long range radio wave propagation over the surface of the earth.

2.1 ELEMENTS AND EVOLUTION OF THE THEORY

When the literaturesearch was being conducted, itwas not unusual to find refer-

ences to some fairlyold work by men of considerable standing such as Sommerfeld,

Kirchhoff,Fresnel and even Newton, amongst others. Much of this work pertained

to lightand itspropagation. In thisway, a certain,although surely limited,view of

the historyof thought on diffraction,and wave propagation in general,was obtained.

This history isintrinsicallyinteresting.It also highlightssome of the key concepts



involved and it lends continuity to the current and more recent work. Therefore,

an attempt is made in this chapter to sketch the evolution of thought on the nature

of light and its ability to diffract. The sketch demonstrates some of the interlaced

traditions of light and sound propagation.

The current theory of interest is an example of the interlaced tradition in

that the concepts involved were developed in the area of radio wave propagation.

Furthermore, and in particular, the presented theory results from an asymptotic

solution of the wave equation; but the result is explained in terms of ray concepts.

In high frequency cases, wave concepts and ray concepts are quite compatible.

However, this compatibility was not always well understood or accepted, even by

Newton himself. There is evidence that Newton noted the ray-like behavior of

light in common surroundings as a part (but far from all) of his argument for the

corpuscular (particle) nature of light. The ensuing struggle to resolve the wave-

particle dispute led to an understanding of ray and wave mechanics which, as is

well known, also have applications in the realm of acoustics.

2.1.1 Some Early Thoughts and Observations of Diffraction

An early, and perhaps the first, "careful" observation of the optical phenomenon

known as diffraction was made by Francesco Maria Grimaldi (c. 1650).2 t He noted

that light does not always travel in straight lines but can bend around comers. This

observation was subsequently made by Newton, Hooke, and Huygens among others

before the turn of the 18th century. Although all concerned parties agreed that light

does actually bend around corners or edges, they did not agree on the explanation.

The scientific community at the time was split between the corpuscular theory

t The year(s) of a discovery, publication or other event is usually enclosed in parentheses

and placed nearby the reference to the event. Hopefully, this approach has enhanced

the readability of the text, and will lend the reader a sense of the chronology without

the strain of searching through the bibliography.
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of light which was championed by Newton and the wave theory of light which

was promoted by Huygens. Each theory put forth explanations for interference,

refraction and diffraction effects. Newton argued that if light propagated as a wave,

like sound does, then _it would bend into the Shadow". He noted that _Rays which

pass very near to the edges of any Body, are bent a little by the action of the

Body, _ but, he continued, that "So soon as the Ray is past the Body, it goes right

on. ,s From a practical point of view, this observation was no doubt correct for

the range of bodies he observed. However, Newton was misled by the difference in

the quantitative size of the diffraction effect between light and sound when each

interacts with ordinary objects. This misunderstanding is clearly present in the

following remark which he used as part of his argument against the wave theory of

light.

For Pression or Motion can-not be propagated in a Fluid
in right lines, beyond an Obstacle which stops part of
the Motion, but will bend and spread every way into the
quiescent Medium which lles beyond the Obstacle ....
The Waves on the Surface of stagnating Water, passing
by the sides of a broad Obstacle which stops part of
them, bend afterwards and dilate themselves gradually
into the quiet Water behind the Obstacle. The Waves,
Pulses or Vibrations of the Air, wherein Sounds consist,
bend manifestly, though not so much as the Waves of
Water. For a Bell or a Cannon may be heard beyond a
Hill which intercepts the sight of the sounding Body, and
Sounds are propagated as readily through crooked Pipes
as through streight ones. But Light is never known to

follow crooked Passages nor to bend into the Shadow. 4

Apparently, the notion of mechanical waves in air and water was well accepted

but the notion of light waves was in contest. Obviously, accepted analogies between

light and sound were quite limited at the time. Further, Newton was able to observe

several phenomena such as the heating of bodies by light which he contended could

be explained only from a corpuscular point of view. "If Light consisted only in Pres-

sion propagated without actual Motion, it would not be able to agitate and heat the
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Bodies which refract and reflect it." Newton's Opticks Dover ed. Impressed by these

observations, Newton held to his corpuscular theory of light, and his prodigious

reputation ensured this theory a large and faithful following.

A major step toward the resolution of this split occurred in 1802 when Thomas

Young announced his principle of interference. Nearly two decades later, but un-

aware of Young's announcement, Augustin Jean Fresnel announced in 1818 his own

principle of interference. Fresnel was able to explain the relationship between the

wavelength and the size of diffraction and interference effects. Fresnel relied heavily

upon Huygens' principle and explained _diffraction as the mutual interference of

secondary waves emitted by those portions of the original wavefront which have not

been obstructed by the diffracting obstacle. "5 Shortly after Fresnel's announce-

ment, Hamilton began work in 1824 on the formulation of the geometrical theory

of optics (or _ray theory"). His work was based upon Fermat's Principle of Least

Time; that is, that the optical distance between any two points is stationary. As

a result of this and other work, the relationship between wave propagation and

ray optics became fairly well understood by the time of the publication in 1865 of

Maxwell's Theory of Electromagnetism. Maxwell's theory crowned the wave theory

of light and, in so doing, made clear the analogy between light and sound.

Further investigations into the relationship between ray optics and wave propa-

gation were made by Kirchhoff. In 1882, he published a _proof" which showed that,

as the wavelength approaches zero, the results given by the wave theory approach

those given by geometrical optics. The strength of this proof was mitigated by some

shortcomings in the Kirchhoff-Huygens principle upon which it was based. Perhaps

a better and more widely accepted account of the relationship between geometri-

cal optics and wave theory was given by Sommerfeld and Runge (1911). Later,

Luneburg (1944) and Kline (1954) showed that an asymptotic expansion in inverse

powers of the wave number can be found for the solution of the wave equation in

the illuminated region of a given scatterer. The leading term of this expansion is

found to be the geometrical optics solution. 6 Thus, the relationship between the

concept of waves and that of rays came to be understood in terms of ray theory

being a high frequency approximation of wave theory.
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2.1.2 Long Range Radio Wave Propagation and the Shadow Zone

Whereas the diffractionof light around common objects is limited to very small

scalesand effects,the propagation of radio waves around the surface of the earth

involvesscaleson which these effectsare more readilyobserved. In the early 1900's,

a great deal of interest arose in phenomena associated with the transmission of

radio waves beyond the lineof sight and into the geometrical Ushadow_ (generically

termed the shadow zone) of the earth. Generally, the model used to describe this

situationwas that of a verticalelectricdipole in the presence of a metallic sphere.

The radius of the sphere was assumed to be much greater than any wavelength of

interest.Unfortunately, under such an assumption the eigenfunction expansion of

the solution in the shadow zone isslowly convergent. However, Watson (1918),who

drew upon the work of Poincar_ (1910) and Nicholson (1910), managed to express

the expansion in terms of a residue series.From thisresidue series,an associated

contour integralwas constructed. Watson showed by deforming the contour in a

particularway that a new, fasterconverging seriescan be derived. This process is

known as Watson's Transformation. White (1922) extended the work of Watson to

include cases when the observer isoutside the shadow zone. In the late 1930's,van

der Pol and Bremrner (1936-38) published severalnotable papers on the propagation

of radio waves over the surface of the earth. (With the same theory, they also

acldressedthe opticalphenomenon known as a rainbow.) Their work included the

use of what they termed "the thirdorder approximation" in the saddle point method

for the solution of diffractionintegralsof the type j"e/(_ dz. This approach yields

a solution involvingAiry functionswhich would be central in the work of V.A. Fock

soon to follow.
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2.1.3 The Local Field in the Penumbra

Shortly after the work of van der Pol and Bremmer, in 1945, V.A. Fock (Fok)

published a paper in which he put forth the _Principle of the Local Field in the

Penumbra Region." Fock considered the case of a high frequency wave incident

upon a perfectlyconducting convex surface of continuously varying curvature. By

way of a physical argument, Fock claimed that the surface current distributionin

and near the shadow boundary depends upon the local curvature and upon the

incident field.This dependence was expressed in the form of a _universal"function

c6a_.

w"_) d_ (2.1)

where 1) _ is a representative distance of a given point on the surface from the

geometric shadow boundary, and 2) r isthe contour which runs from infinityto the

origin along the path arg(z) = 27r/3 and from the originto infinityalong the real

axis. w_ (a) issimply relatedto the derivativeof the Airy function and isa bounded

solution to w"(a) -- aw(a). The function G(_) decreases exponentially with _ for

large positivevalues of _ in the shadow zone and asymptotically approaches 2 for

large negative values of _ in the illuminated region. The characteristicwidth of the

penumbra was given as d -- [AR_/_],/3 where R0 isthe radius of curvature of the

surface at the grazing point of the incidentwave and in the plane of incidence.

In the following year, 1946, Fock derived the same result directly from the

Helmholtz equation. In addition, Fock extended the solution to the region in the

_neighborhood" of the surface and included bodies which are _good _ conductors

in the sense of the Leontovich boundary condition.7 (In acoustic terms, the Leon-

tovich boundary condition (used below) is analogous to the impedance boundary

condition associated with locallyreacting surfaces.)In short, Fock began with the

Helmholtz equation

x72• + k_• = 0 (2.2)
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= e (2.3)

and assumed 1) that _" varies slowly over a distance of one wavelength, and 2)

that variations in _* normal to the surface are much greater than variations in _"

tangential to the surface. Then, he transformed the local coordinates to a parabolic

system (_, 0) where _ = 0 represents the local surface. After further manipulation,

the solution was shown to be

where V isthe solution to

with the boundary condition

_* = e-i¢,l ei¢*13V (2.4)

02 V .OV
+ + ,v = 0 (2.5)

o¢

(9V
,,--+qV-O at r/-O. (2.6)

Fock used the Sommerfeld radiation condition as the exterior boundary condition.

The parameter q is a dimensionless surface admittance or conductance. One iden-

tifies a diffusion-like operator 02/0%/2. According to Foek, Malyughinetz first in-

troduced the notion of transverse diffusion which arises due to this operator, s As

its name implies, the transverse diffusion is in the r/direction; that is, at any point

the diffusion is along lines of constant _. Therefore, it contributes to the transport

of energy into the shadow zone. According to Fock, the transverse diffusion is in-

significant except near the line of sight and near the surface. (Interestingly, (2.5) is

of the same form as the SchrSdinger equation.)t A solution for V was found in the

form of a contour integral

vc_,rl,q)- 2_f_ [w2Ca- ,)- w2(a)-qw2Ca)w'l(a)- qwl Ca) wl Ca - r/)] ¢'"_ drw (2.7)

where w_ (a) is a second, linearly independent Airy function.' At the surface (r/--

0), and for a perfectly conducting surface (q = 0), the function V reduces to (2.1)

derived by Fock the previous year.

t A decimal number contained in parantheses is a reference to a displayed equation of

the same number. Numbered figures, tables, etc. are specifically referred to as such.
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2.1.4 Geometrical Theory of Diffraction

Approximately one decade after the publication of Fock's work, Keller (1956) pub-

lished the "Geometrical Theory of Diffraction." Keller's theory was based upon a

heuristic application of Fermat's principle. In order to account for diffraction effects,

Keller added a modified form of the principle which states that "the diffracted rays

connecting the points P and Q are those curves which render stationary the Fermat

integral among all curves connecting P and Q, and having a point or arc on the

diffracting obstacle. "_° (Note: The original wording was "... arc on the cylinder."

since this was the geometry originally examined.) This statement can be aplied to

any body of arbitrary shape. The resulting solution is in terms of unknown "diffrac-

tion coefficients", which are analogous to the reflection coefficient, and which are

found by comparison to well known exact solutions of various canonical problems.

These coefficients are functions of the incident field, the wavelength, and the surface

properties and geometry at the point of diffraction. These coefficients follow the

spirit of Fock's notion of the local field in the penumbra. Keller's theory formalized

the concept of "creeping" waves, so-called by Franz and Depperman (1952), for an

arbitrarily shaped body. The "creeping" wave hypothesis is that, from the point of

diffraction, a portion of the incident wave proceeds to travel into the shadow zone

along a ray path coincident with a geodesic of the surface. This wave continuously

sheds rays tangential to the geodesic ray path in accord with the modified Fermat's

principle of diffraction. Keller's theory is a high frequency approximation although

good results have been reported at wavelengths on the order of the dimensions of

the diffracting obstacle. _1 This theory is not valid near the geometric shadow

boundary or on the surface of the diffracting obstacle; that is, the ray approach is

invalidat caustics.
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2.1.5 Recent Developments

In 1959, Goodrich examined Fock's theory in lightof the work of Keller,Franz and

Depperman, and Kazarinoff and Ritt (1959). Goodrich showed that by changing

Fock's choiceof coordinate transformation that Fock's theory willyieldproperly the

creeping wave behavior discussed above. Also, Goodrich noted that Fock's theory

isessentiallya 2-dimensional one in that itdoes not account for ray convergence on

the surface of a 3-dimensional body. This difficultywas overcome in the derivation

of Hong (1967).

An analysis of previously published diffraction theories was made by Logan

(1959). Subsequently, Logan and Yee (1962) presented a thorough mathematical

treatment of the interrelationships between the relevant theories for diffraction from

a convex body. More recently, Ivanov (1971) examined plane wave diffraction from

an ideally reflecting cylinder. He proceeded to match an asymptotic solution valid in

the shadow zone to an asymptotic solution valid in the illuminated region. Ivanov's

matched solution was continuous but not necessarily smooth at the shadow bound-

ary. Later, Pathak (1979) found his own uniform, asymptotic solution. His solution

is for a perfectly conducting surface and is valid everywhere except at the surface.

Pathak's solution is given in terms of well tabulated functions similar to those of

Fock.

The current theory of interestis that presented by Pierce (1986). His solu-

tion employs the method of Matched Asymptotic Expansions to derive a uniform

solution that 1) isvalid on much of the surface,and 2) reduces asymptotically to

the geometrical acoustics solution in the illuminated region. The theory also ac-

counts for locallyreacting surfaces of finiteimpedance. A summary of this theory

ispresented in chapter 3.
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2.2 RECENT EXPERIMENTAL STUDIES

A survey of related experimental studies is presented now. This survey includes the

results of experimental studies of the diffraction of waves incident upon cones and

other bodies of revolution as well as experiments on wave propagation over and on

curved surfaces. As stated above, a significant portion of the relevant experimental

work has involved electromagnetic wave propagation. An effort is made to include

this work although an emphasis is placed upon work performed in the realm of

acoustics. To the best of the author's knowledge, the survey includes most of

the relevant experimental work from the past two decades. The objective here is

to show the extent of the experimental evidence which supports (or opposes) the

theory discussed above. As is discussed below, the majority of experimental results

have been found to be in good or excellent agreement with the theory. Typically,

the greatest difficulties are encountered in regions near the line of sight. Further,

it appears that there is a large amount of experimental data on scattering from

screens and wedges compared to that on scattering from smoothly curved bodies.

This discrepancy is due to interest in the design and performance of barriers. In this

area, a legitimate question concerns the impact of having a curved barrier top versus

a pointed or flat barrier top. Since this question will be addressed later in the thesis,

a brief discussion of results involving screens and wedges is included. However, most

of the discussion is intentionally tilted towards cases involving curved surfaces.

2.2.1 Edgy Barriers: Screens and Wedges

A renewed interest in experimental and theoretical work related to the performance

of sound barriers occurred during the early 1960's due to the public alarm over the

rise in environmental noise pollution. This rise in noise pollution was attributable

in large part to the proliferation of airplanes and automobiles, and the location of

factories and facilities in urban and suburban centers. In 1968, Maekawa gathered
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experimental data on the attenuation of sound over a wide barrier (screen). He was

concerned principally with sound from sources near the barrier. Maekawa used this

data along with the Kirchhoff-Fresne]solution for sound propagation over a semi-

infinitescreen to develop a chart method for predicting the attenuation of sound

over a finitescreen. Maekawa's work included direct and ground reflectedrays

although the ground was idealizedas rigid. Scholes, Salvidge and Sargent (1970)

carried out a seriesof fullexperiments which measured the barrier performance

of a screen for multiple receiverpositions near and far from the screen. They also

considered the effectsof favorableand unfavorable wind conditions. In most of their

experiments, the source was relativelycloseto the screen. The resultsfor zero wind

were in good agreement with those predicted by Maekawa's method.

Jonasson (1971,1972) and Ambaud and Bergassoli (1972) performed experi-

ments on noise reduction from wedged barriers. Jonasson considered the effectof

the surface impedance of the ground and wedge on barrier performance. The re-

suitsof his analyticalmodel compare well with experiment for situationswhen the

source and receiverare deep in the shadow zone and the closed angle of the wedge is

greater than _r/2.Kurze (1973) published a literaturesurvey in which the effectsof

various components of barrierperformance were outlined. He analyzed the accuracy

of the then current prediction methods with respect to various source and receiver

positions,ground and barriersurface impedances, and wind conditions. Kurze ex-

amined both wedge and screen type barriers.More recent experiments have been

carried out by Bremhorst and Medwin (1978),and Thomasson (1978). Thomasson

improved upon the work of Jonasson (1972) and Lindblad (1970) by using an in-

tegralequation approach involving Green's functions. In addition to the improved

mathematical rigor of the solution,the resultsfor finitescreens of low height were

good when compared with experiment. He also introduced an approximate method

for "solution of the impedance boundary condition." Bremhorst and Medwin ex-

amined the diffractionof a point source pulse by an infinitescreen and wedge. They
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used the Biot-Tolstoy theory (1957) as a building block for the prediction of finite

screen and wedge diffraction in the shadow zone.

A rather voluminous study of highway noise propagation over barriers was

published by Hayek et a/. (1978). Their theoretical analysis included barrier ge-

ometries such as screens, wedges, cylinder-topped wedges, and trapezoids. They

also examined the influence of a finite impedance ground and barrier surface. The

results indicated that some of the then current prediction procedures were insen-

sitive to parameters which their analysis showed to be important in determining

barrier performance. Some of these parameters were screen thickness, barrier sur-

face impedance, and interior wedge angle. The authors concluded their study by

recommending further studies, particularly experimental and involving curved bar-

riers. More recent results were presented by Nicolas et a/. (1982) and deJong et

a/. (1982). deJong et a/. measured the sound transmission loss for cases of finite

and discontinuous impedances along the surface of the barrier and ground. After

extending Jonasson's method, they found good agreement between the calculated

and measured results for the above cases. Nicolas et al. measured the diffraction of

direct and reflected rays over a semi-infinite screen. Finite ground impedance effects

were included. In cases where the source or receiver is near the barrier, they found

a large discrepancy (sometimes on the order of 12 dB) between their experimental

results and those predicted by the first-order Macdonald solution (Bowman eta/.)

as well as those predicted by the classic Kirchhoff- Fresnel theory. Much better

agreement was found when their experimental results were compared with results

based upon the method of Pierce and Hadden (1981). This method is derived from

a reformulation of the problem of a point source in the vicinity of a rigid wedge. The

method reduces quickly to various limiting cases of the source and listener positions

and the closed wedge angle. The method was shown to be valid for arbitrary source

and listener positions. An efficient numerical solution is found through the use of

Laguerre integration. A comparison between the numerical results of the method

and the experimental results of Ambaud and Bergassoli shows good agreement.
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2.2.2 Bodies Born of Revolution

Cones and other bodies of revolution offer simple 3-dimensional geometries

which 1) are easy to find or construct and, thus, allow for experimental testing of

theories such as the Geometrical Theory of Diffraction (GTD), and 2) readily admit

numerical solutions due to symmetry considerations. For this reason, many recent

papers have reported the use of cones, spheres, and ellipsoids in their model ex-

periments. Keller (1961) made a comparison between theoretical and experimental

results for the backscattering cross-section produced by the electromagnetic irradi-

ation of a perfectly conducting cone. The experimental results were obtained by

Keys and Primich (1959) for six different cones with half-anghs ranging from 4 to 20

degrees. The data is in good agreement with predictions based upon Keller's Geo-

metrical Theory of Diffraction. Bechtel (1965) carried out a series of experiments to

measure the radar cross-section (RCS) of cones with half-angles of 4, 15, and 90 de-

grees. The size of the base, a, was also varied between 0.98 and 2.87 wavelengths in

diameter. Again, Bechtel compared his results with predictions based upon Keller's

GTD. For /ca on the order of 8 or 9, Bechtel found good agreement between the

theory and experiment except for cases when the cone is observed within 30-40

degrees of nose-on with a vertically polarized wave (i.e. wavefront parallel to the

axis of the cone). For smaller cone bases on the order of ka -- 3, the predicted

RCS matched the observed RCS to within 5 dB but the predicted shape or form of

the RCS was not well observed, particularly within 30 degrees of nose-on. Another

set of reported data on cone diffraction was gathered by Bargeliotes et a/. (1975).

Mittra and Safavi-naini (1978) compared these experimental results with theory

which considered the potential field as being produced by an array of point sources

on the surface of a _cone. The array represented the surface currents as derived

asymptotically by Fock and others. The comparison showed good agreement when

the diffracted rays had traveled a significant angular distance around the cone. No
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resultsfor near grazing angles of incidence were found in their report. An extensive

study of acoustic scattering from various bodies was made by Lang (1980). He

measured forward and back scattering as well as creeping wave type phenomena

from smooth, rigidobjects such as barnes,cylinders,cones, and cone variants.

Experimental data on high frequency diffractionand/or reflectionfrom other

bodies of revolution has been reported by a number of sources. Neubauer (1967)

measured the traveltime from source to receiverof a sonic pulse diffractedaround

a circularaluminum cylinder. The measurements were made in water. He posi-

tioned a narrow-beam source such that the central ray arrived tangential to the

cylinder surface and normal to the axis of the cylinder. An array of fiveequally

spaced hydrophones measured the amplitude and arrivaltime of the pulse. The

hydrophones were deep in the shadow zone. Neubauer found that his resultswere

in excellentagreement with those predicted by the _creeping wave" theory of Franz

and Keller. Neubauer also reported that a slitof lessthan a wavelength in width

and positioned along the grazing lineallowed a _...largepart of the wave to pass."

Further, he placed a baffleagainst the cylinder surface to block passage through

the water and, subsequently, found littleor no transmission. Thus, he concluded

that the wave was transmitted on the water side of the cylinder boundary. Foxwell

(1970), and Blake and Wilson (1977) carried out related experiments. Fox-wellmea-

sured the diffractedfieldon the shadowed surface of a rigidsphere. A point source

located on the surface formed the illuminated pole. At high wavenumbers, Foxwell

observed interferenceeffectspredicted by creeping wave theory. Blake and Wilson

performed an analogous experiment using a highly eccentricprolatespheroid. Their

sound source was located at a distance from the surface equal to the length of the

spheroid and along the major axis. Measurements revealed an illuminated spot at

the antipole and the existence of the creeping wave interferencepattern near the

antipole. In addition, Blake and Wilson reported that 1) the measured levelsat
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the antipole _decrease roughly as the reciprocal of frequency", 2) that the shadow

zone measurements are _vell approximated by Keller's Geometric Theory of Dif-

fraction", and 3) that deviations on the order of 3 dB from the theory _are observed

at high frequencies and at coordinates off the antipole. _ . Lang (1980) also examined

acoustic scattering from the surface of a thin prolate spheroid and used the results

to deduce characteristics of acoustic scattering from any smoothly curved surface.

Lang concluded that the _backscattered pressure from smoothly curved bodies is

determined almost exclusively by specular effects, even at wavelengths that are rel-

atively large compared to the appropriate dimensions of the scatterers." He also

observed _evidence of surface fields very close to smoothly curved scatterers _ that

he _identified with Franz-type creeping waves."

More recently, Almgren (1986) measured the insertion loss above and behind

convex and concave cylinders. A distant spark source provided a near planar inci-

dent wave. Almgren was interested in examining the analogous relationship between

sound propagation over a curved surface and that in a medium with a linear ver-

tical sound speed gradient. He found that _it is reasonable to simulate the effect

of refraction due to a sound speed gradient ... with a curved ground scale model. _

Only small errors on the order of 3 dB or less were found for all measurements

including those at grazing incidence. These errors were relative to the theory as

presented in the works of Pekeris (1946), Pridmore and Brown (1962), and Pierce

(1981). (Almgren also examined the impact of the acoustic boundary layer in cases

involving a very hard surface. His data shows that the boundary layer makes only

a small contribution to the total insertion loss; however, he did conclude that the

boundary layer effect is important when comparing scale model results to those at

full scale.) Berry and Daigle (1987) also were interested in the refraction of sound

in a stratified atmosphere. Like Almgren, they chose to examine the analogous case

of diffraction over a convex curved surface. A tone burst mechanism was used to
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produce a narrow band point source. Their measurements were confined to listener

positions deep in the shadow zone and in the penumbra region while the point

source was placed either on or slightly above the surface of the ridge. Measure-

ments were made over a frequency range of 0.3 to 10 kHz. For listener positions

below the shadow boundary, they compared their results to predictions based upon

an extended version of the creeping wave theory. For listener positions above the

shadow boundary, they compared their results to predictions based upon geomet-

rical theory. At the shadow boundary, they reported that the two theories agreed

to within 1/2 dB. However, the experimental results differed from the theoretical

results by as much as 5 dB in cases where the listener was either on or near the

shadow boundary. Comparisons outside of this region were good.

2.3 In a Nutshell

Based upon the surveyed literature, it seems clear that although the qualitative

nature of the sound field produced by propagation over a curved surface is well

understood, problems still exist in terms of accurately predicting the magnitude

and phase of the field, particularly near caustics such as the line of sight. The

remainder of this thesis involves comparing newly acquired experimental data to

the results of a refreshed and improved new version of the theory. The objective is

to improve upon the accuracy of previous predictions and to sort out the important

parameters and aspects of the scattered sound field near, around, and far from a

curved surface.
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CHAPTER III

THEORY OF SOUND PROPAGATION

OVER A CURVED SURFACE

The objective of this chapter is to present all of the important ideas and as-

pects of the current theory of interest as developed by Pierce. t2 Many of the

mathematical details have been omitted but they can be found in Appendix A.

3.1 Prototype Problem

Consider the two-dimensional prototype problem shown in Fig.(3.1). A plane wave

of constant frequency, jr = w/2_r, (e -_t time dependence) and with complex pres-

sure amplitude P_e _k_ is incident upon a locally reacting surface whose radius of

curvature R is not necessarily constant, but is nevertheless everywhere large com-

pared with 1/k. The surface is characterized by a finite impedance, Zo, which,

for simplicity, is not a function of position. A cartesian coordinate system (x,y) is

situated such that its origin is the point where a ray associated with the incident

plane wave just grazes the surface, and such that the x-axis is coincident with this
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ray. In thiscontext, the originisreferredto as the apex of the surface since the rest

of the surface liesin the half-spacey < 0.

The interesthere isin obtaining a solutionfor the totalacoustic fieldabove and

behind (x > 0) the curved surface. From physical intuition,one can discern three

basic zones surrounding the surface. As shown, these zones are labeled the bright

zone, the penumbra, and the shadow zone. These terms derive from the analogous

problem ofa beam oflighttravelingpast an obstacle.The term "penumbra" literally

means a region of partialshadow between regions ofcomplete shadow and complete

illumination._3 Although the sound pressure in the shadow zone is not exactly

zero, it issmall enough such that the term penumbra isstilltechnicallyaccurate.

In thiscontext, the penumbra refersto that region straddling eithersideof the line

of sight.As in the opticalanalog, the width of the penumbra isflaredas one moves

further and further away from the apex. The penumbra isalsooften referred to as

the transitionzone.

3.2 Geometric Acoustics Solution

As a first step, one can apply the concepts of ray acoustics to derive a solution at

points located in the bright zone (Fig. 3.2). This is reasonable since the propagation

is considered to be relatively high frequency such that kR ::_ 1. The so-called

geometrical acoustics solution is described as a superposition of an incident and a

reflected ray, such that

p = p_e 'k= + P_[ACO)lA(?.)]'/2_e'k'°e '_ (3.1)

where p is pressure, P_ is the magnitude of the incident plane wave, _ is the reflection

coefficient and A(l) denotes ray tube area after propagation a distance £ from the

reflection point. The reflection point (x0,y0), the local angle of incidence 0_, the

local curvature radius R, and the reflected ray path length l can all be determined
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Figure 3.1 Depiction of the prototype problem for an investigation of long

range sound propagation over irregular terrain. It is believed that the

dominant effects on such propagation are due to interactions with the

tops of hills or ridges. A generic hill top is approximated as a curved

(parabolic) surface of finite impedance. The incident wave is plane.

Three regions above and behind the curved surface can be identified.

These are the bright zone, the penumbra, and the shadow zone.
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for given listenercoordinates (x,y) using the law of mirrors and the mathematical

descriptionof the surface.

For the purposes of this study, consider that portion of the surface in the

vicinity of the apex. One can approximate the local shape of the surface by a

parabola y - -z 2/2R, where R is the local radius of curvature. In those cases

where the reflectedray originatesfrom this portion of the surface, the geometric

acoustics solution can be written as

{ rQ C }
- _z + z,

where

Q = [(4/9)z2+ (2/3)Ry]1/2

¢ = (2k/R2)[Q3 - (s/27)_3 - (2/3)Rxy]

Scaling parameters

L", = R(kR) -1/3 Ly = R(kR) -2/3 (3.5)

can be introduced such that, when p e -_", (as shown above) is expressed in terms

of x/L. and y/Lv, the resulting expression is independent of k and R, but not of

their product.

It is well known that geometric acoustic solutions such as the one derived above

are invalid near caustics. In the prototype problem, the line of sight is one such

caustic. Therefore, one does not expect good results from (3.2) at points on or near

the line of sight. However, one recognizes that a solution (as yet unknown) valid

within the line of sight caustic should have a reasonably smooth transition to the

geometric acoustics solution in the region above and adjacent to the line of sight.

This reasoning suggests that the geometric acoustics solution could be used as a

radiation (boundary) condition when solving the Helmholtz equation in the caustic

region. More specifically, since an impedance boundary condition is assumed for

the surface, one can pose the problem of determining the field near and on the apex

in terms of the Helmholtz equation with an impedance (mixed) boundary condition

at the surface and a geometric acoustics radiation condition at points well above

the apex.
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Direct

Reflected

• @' i

_ IITll(x,y)

R

\

Figure 3.2 Geometric description of the acoustic field at a point in the

bright zone above a curved surface. The reflection occurs according to

the law of mirrors. The effects at the point of reflection are described

by the plane wave reflection coemcient and by the divergence of rays

striking adjacent infinitesimal segments of the surface. The solution is

a superposition of a reflected and direct ray.
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3.3 Matched Asymptotic Expansions and the Field near the Surface

To begin, as was done in deriving the geometric acousticssolution,the localshape

of the surface near the apex isapproximated by the parabola y = -z 2/2R. Then

one transforms coordinates from the cartesianset (z,y) to a parabolic cylinder set

(u,v) such that the new equation of the surface isv = 0. The relationbetween the

two coordinate setsis described by

==_C I + [vlR]) (3.6)

y = _ C1 + [_I2R]) - _/(2R)

The scaling parameters L= and L_ can be introduced such that a set of scaled and

non-dimensional parabolic cylinder coordinates (_,r/) emerge. They are defined by

2_ (3.7)
_=_ v=_- .

One can use the basic rules of orthogonal curvilinear coordinate transformations to

express the Helmholtz equation

(v2+ k2)p= 0 (3.s)

in terms of the _ and r/.Further, ifone writes

(3.9)

and introduces a small parameter

2 ,_l/s
= \_/ , (3.10)

then, after discarding higher order terms in the parameter E, one is left with the

parabolic equation

a2G .aG

_-_ +,_ +,7c = o. (3.1_)

This is the same differential equation found by Fock (see (2.5)).
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The impedanceboundary condition at the surface is, in general, of the form

ikpc

Vp.K+-_-, p-0. (3.12)

where K isthe unit vector normal to the surface. In the scaled parabolic coordinate

system, the impedance condition takes the form

aG

Wa---i-qG'-0 at W:0 (3.13)

where

I?) l/s pc (3.14)q = i m Z-_

is a nondimensional scaled admittance. One notes that since Re{Zo} > 0 for a

passive surface, the phase of q is such that 0 < arg(q) < 7r.

The radiation condition is formulated from an asymptotic analysis of (3.2)

when 4 < 0 and _/_ 1. The analysis suggests that the radiation condition be

(3.15)

. (--24 -{- (42 "t- St/) I/' + 3iq_ e,e }--24 -I- (4 _ + 3r/) _/2 3s'qJ

where

4 4

e = -_4,7+ _ {4_+ (4_+ 3,_)"_ } (3.16)

This asymptotic form of (3.2) is required to match the solution of (3.11-3.14) at

points where 4 < 0 and r/ >> 1. It can be shown that 4rl - 43/3 + O satisfies the

eikonal equation. This fact suggests that (3.15) is of a reasonable form.

Fock solved the boundary value problem posed above by the method of sepa-

ration of variables. An alternative but similar approach is to introduce a function

T(r/, a) and assume a solution for G in terms of the Fourier transform of T. That

is, write

= [ e"¢T(,%,_) d,_ (3.17)G(4,_)
Jc
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where the contour C is independent of _ and r/. The introduction of this transform

into (3.11) separates the variables and results in the requirement that

d2T

+ - a)r = 0 (3.18)

which is the Airy differential equation. This differential equation is the fundamental

member of a class of differential equations known as turning point problems. As the

name implies, the character of the solution of such problems changes when a so-

called turning point is crossed. In (3.18), the turning point is r/ - a. One notes

that for r/> a, T will have a sinusoidal character, while for r/< a, T will have an

exponential character. Two independent solutions of (3.18) are

,,Ca-,7) =
(3.1o)

Wl (a- 17) = e"/e2_rX/2Ai (e'2"/3 (a - r/))

where v(z) and wx (z) are so-called Sock functions and Ai(z) is the Airy function of

complex argument. The Airy function is an entire function and can be expressed

as a contour integral of the form

1 /c ei[''/3+''Ids (3.20)Ai(z) = _ ,,

where the integration contour C^i can be any path originating at infinity in the

sector 2_r/3 _< arg(s) < _r and ending at infinity in the sector 0 < arg(s) _< _r/3.

The boundary condition (3.13) is easily satisfied by substituting in the assumed

solution (3.17), letting T(rl, a) = v(a - rl) + co(a)w, (a - rl), and solving for c0(a).

The task of satisfying the radiation condition (3.15) is, at first glance, rather im-

posing. However, physical reasoning requires that (3.17) approach the first term of

the radiation condition when the listener is in the illuminated region (i.e. when _ is

large and negative). The result of such a requirement can be shown to satisfy the

entire radiation condition. (See appendix A.)



The resulting complete solution is

3O

"'@ - ,7)]¢ do, 0.21)- (")

which is also referred to as the Fock-van-der-Pol-Bremmer function and is trivially

related to what Logan (1959) calls "Fock's form of the van der Pol-Bremmer dif-

fraction formula." The two terms in the integrand are associated with the incident

wave and the scattered wave, respectively. This association is borne out by the

facts that the second term alone is a function of the surface property, q, and the

first term is integrable as

lf_f_ vCc__rl)e+_da=e_,_,/se_ (3.22)

A comparison of this result with (3.15) indicates that (3.21) is associated with the

incident wave.

3.4 Alternate Forms of the Fock-van-der-Pol-Bremmer function

Although (3.21)is a general solution to the prototype problem, the integralitself

is not easilycomputed, either analyticallyor numerically. The reason for this is

that the integrand isoften rapidly varying along the entire length of the negative

real axis. However, alternate or approximate forms of (3.21)can be found for the

penumbra, shadow zone, and along the surface such that better or more e_cient

numerical results can be obtained. The presentation of computational results is

deferred until chapters 7 and 8. There, all of the theoretical predictions of the

insertion loss at various fieldpositions will be presented along with appropriate

experimental results.In the remainder of thischapter, the various alternate forms

of the Fock-van-der-Pol-Bremmer function,which were used during computations,

are presented and discussed.
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3.5 Field near the Apex and on the Surface

At this point, it is helpful to introduce a third Fock function w2 which is a linear

combination of wl and v of the form

w2(z) = e-'"/627d/2AiCze-'2"/3).

Then, (3.22) can be reexpressed without approximation as

t_t (8)

J

¢(_)-q_(_)_,(s-_)le'._jds
_i(s) q_,(_)

1 [_(s- _) -G( _, rh q) = --_

(3.23)

(3.24)

where _ = r/e -_2_/3, _ = qe _2_13, and _ = se I_'13. This form is preferable to (3.21)

because the integrands become vanishingly small for values of s greater than s _ 8.

Although several integration schemes were tried, satisfactory results were found

using the extended Simpson's rule. (In fact, in cases where the integrand is rapidly

oscillating, Simpson's rule can be more accurate than other more sophisticated,

higher order methods.) For I_1 <--2, a step size of As = 1/20 was used. For larger

valuesof I_l,a step sizeof _s = 1/101_1wasused.

On the surface, one can simplify (3.24) by multiplying the numerator and

denominator of the first term of the integrand by the denominator of the second

term and combining the two terms. Then one can make use of the Wronskian

relations W(v, wx)= W(v,w2) = 1 to yield

lfo®a(_,O,q) =

e-_,¢/ae- o¢J_/2

w_(s) -- e'a'/Sqwa(s)

ds
,4 (s) - q_,,(_)

ds

(3.25)

Again, the extended Simpson's rule was used to estimate the integral. In both cases,

the integrands themselves were evaluated with the help of an algorithm developed

by Pierce for the computation of Ai(z) where z is arbitrary complex. _4 This

algorithm is presented in some detail in appendix B.
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3.6 Field in the Penumbra

In the penumbra, one can use the method of steepest descent to derive an approx-

imate expression for G. This expression can be written as the sum of two parts.

The first of these parts contains an integral of type commonly found in problems

involving Fresnel diffraction, and is represented by the symbol (li. For reasons which

will be soon clear, • is referred to as the knife edge diffraction term. The second

part consists of two integrals which are collectively referred to as the background

(the term used by Fock), and represented by the symbol q/. Thus, if one writes

G = (I) + _, (3.26)

then it can be shown that

1 foo® - _w'_ Cs) - qe'2" /3w2(s)

1 [_ ¢ v'(s)- qv(s)

-- -'_ Jo eiJ W1 (3
rl)ds

w'1(s)- qwl (s)

(3.27)

and

_= [e-_'/Se_'H(Y) e'' "_ ''' ]V/_e'," A. (Y) (3.28)

where H(Y) is the Heaviside step function. The argument Y, which represents a

dimensionless height, is positive in the bright zone and negative in the shadow zone,

and is written as

(_) I/2
Y =- v/1/'(_-ff 1/2) (3.29)

The diffraction integral, AD (Y), is

(Y)=
e -u2 dt_

(_r12)l /2 y - e-_,_ / 4u
(3.30)

and is commonly found in asymptotic solutions of the wave equation in cases when

at least part of the boundary has a sharp edgeJ s For purposes of computation,

AD (Y) can be expressed as the Sum of two auziliary Fresnel functions each of which
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has a simple rational approximation valid for positive values of Y. The fact that

Az_ (Y) is an odd function of Y enables one to use the rational approximations for

both positive and negative values of y.,e

As an example of another problem in which the diffraction integral, AD, arises,

consider the problem of a point source of strength S radiating over a rigid wedge of

exterior angle _, where 7r </_ < 2_r (Fig. 3.3). 17 When both kr and kr, are large

compared to 1, when the source angle _b, is between _r and _ but close to neither,

and when the listener is near the line of sight, then an approximate expression for

the complex pressure amplitude is

-- ___.__4_iLX _ A

where

krr. _ II_
x= k /

(3.31)

and A4 = 4 -- (4° -- _r) (3.32)

where L = ro + r. When the incident wave is plane, and the listener is near the

line of sight, another dimensionless height can be derived from X. This derivation

is accomplished by setting r ._ z, y _. z A4, and letting r, --* oo. Then

G (3.33)

Note that the wedge solution is not a function of the wedge angle _, and is valid

for any thin wedge or knife edge. One recognizes the similarity between (3.31) and

(3.28); in fact, one can show that they are identical except for the difference in the

dimensionless height variables X and Y. Thus, one can infer that similar physical

mechanisms are involved, and so it is appropriate to refer to • as a knife edge

diffraction term. Interestingly, • is not a function of the acoustic impedance and is

virtually independent of the shape of the diffracting body. (In fact, there is a slight

dependence through the scaled coordinates.) This independence is in accord with

physical intuition in that when the source and receiver are far from the surface and
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_S

Figure 3.3 Geometry associated with the diffraction of sound over a wedge.
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near the line of sight, one expects the curved surface to be indistinguishable from a

thin wedge or knife edge. One could also apply the concepts of the the Geometrical

Theory of Diffraction (GTD) and reason that as the source and receiver move further

and further apart along the line of sight, less and less of the surface near the apex

is involved in the diffraction process. In the limit of such reasoning, the diffracted

rays impinge upon the apex of the surface and depart from there without traveling

any appreciable distance along the surface itself. In this way, the far field effect of

diffraction from a curved surface is like that from a knife edge.

According to the above reasoning, all curved surfaces eventually diffract as a

knife edge in the limit of the source and listener being very far from the surface.

Therefore, at listener locations in the penumbra and far from the apex, it is rea-

sonable to propose (3.31) as the appropriate solution. It has already been proposed

that a valid solution near the apex is G = • ÷ • (3.26-3.28). If these solutions

are accepted, then several questions immediately come to mind. Namely, is there

a smooth transition from (3.26) to (3.31) at points neither near nor far from the

apex? If not, then clearly there is some mid-range region in which neither (3.31) nor

(3.26) are valid or at least in which they are incompatible, and so the next obvious

question is in what regions are they valid? Furthermore, in regions where neither

is valid, how do the solutions behave and do they still yield reasonable results? To

address these questions, one need first examine certain properties of (3.26-3.28).

Computations show that the magnitude of the background, _, is significant

at points close to the apex but less so at points far behind the apex, say x >> R.

At such points, one might be tempted to let G _ ¢. Such an approximation is

appealing because the work involved in evaluating _ is much greater than that

involved in evaluating ¢. Thus, a good deal of computational effort would be saved

by neglecting @, when possible, and approximating G as ¢.

At first glance, this result is also very appealing because the functional form of

is identical to that in (3.31), and because (3.31) is valid at distances far from the
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apex. Therefore, one might conclude (erroneously) that a smooth transition exists

between (3.26) and (3.31), and that ¢ can be used as the extended solution to (3.26)

at points in the penumbra far downstream from the apex. However, an inspection

and comparison of ¢ and (3.31) reveals that although the form of • is identical

to that of (3.31), an important difference exists between the dimensionless height

variables, Y and X. The difference between Y and X is a result of the different

geometries involved in the respective problems. From symmetry considerations, the

zero height line for a knife-edge must be the line of sight. In (3.32), one sees that

X = 0 when A¢ = 0, which is the line of sight. However, Y = 0 is not coincident

with the line of sight. Instead, relative to the (x,y) coordinate system, Y = 0 is an

upward sloping curve (parabola) originating at the apex, which is the point (0, 0)

in both the (x,y) and (_,rl) coordinate systems. Therefore, at points far from the

apex, Y --- 0 represents points of cartesian height, y ::_ 0; that is, far from the apex,

points of Y = 0 lie well above the line of sight. Thus, the divergence of Y = 0 from

X = 0 at large x or r indicates that _, and thus also (3.26), will not asymptotically

approach (3.31), the knife-edge diffraction solution. That the form of the knife-edge

diffraction solution should fall out of the integral solution (3.21) would seem to be

a consequence of the fact that near the apex, Y _ X.

An interesting case of (3.26) is found when a value of q is such that • _ 0 when

Y _ X (i.e. when x is small). In such cases, the field behind the curved surface will

be nearly the same as if the surface were a rigid knife-edge. That such q's should

exist is supported by again reasoning as in the GTD. For instance, when the curved

surface is soft or highly absorbent (large q), one expects the insertion loss behind

the surface to be larger than that behind a knife-edge because all rays impinging

upon the surface and all creeping waves traveling along the surface will be highly

attenuated.t In other words, there is a relatively large amount of absorbent surface

t Insertion loss is defined as that loss, expressed in dB, which occurs at • field point due

to the insertion of an obstruction into the field. In the case of a sin¢le curved surface,

the in.ertion loss is defined by IL = 20 1o,, o Ip/pil
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area near the lineof sight. Conversely, when the curved surface isvery hard, one

expects the insertionlossbehind the surface to be smaller than that of a knife-edge

because the creeping waves willpropagate intothe penumbra and shadow zone with

very littleattenuation. Geometrically, one senses that more of the incident wave is

likelyto scatterforward in the case of a curved surface. Ifthisistrue, then more of

the incident energy isalsospread over the area behind the curved surface. The fact

that the area behind a curved surface issmaller than that behind a knife edge is

important when one considers that no energy may cross an infinitelyhard or rigid

surface boundary. Thus, one expects a stronger overallfieldbehind a rigidcurved

surface than behind a rigidknife-edge. Such reasoning indicatesthat a moderate

surface admittance q (not too hard or too soft)might yield resultsvery similar to

that of a rigidknife edge even when the listenerisnear the apex.

3.7 Field in the Shadow Zone

Well below the line of sight, in the shadow zone, another approach to the solution of

(3.21) is available. After some simple algebra, (3.21) can be rewritten in the more

compact form of

c(_,7,q)= _ L wick)-qw,(_)J

where

and

(3.35)

x(-,7)= _,(_),(_- 7)- _(_)_,(_- 7) (3.36)
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In the limit '7 = O, X(a,O) = 0 identically, while the Wronskian relation W(v, wl) =

I yields _o(a, 0) = 1. So, for sufficiently small r/, the behavior of the integrand of G

is dictated by e '°¢/(w'_ (a) - qw_ (a)). Further, at large a,

1 e2==/2/3 (3.37)

These facts allow one to close the integration contour along a semi-circle at infinity

in the upper half of complex a plane without effecting the value of the integral.

Then, the Cauchy residue theorem can be applied to evaluate it. The integrand has

poles located at the roots of

=o (3.38)

The fact that the Airy function and its associated Fock functions are entire ensures

that the above roots are the only singularities of the integrand in the finite complex

plane. Since all of the singularities are simple poles, the residue of the integrand is

v'(a,,)-qv(a,,) (a, --'7)e '-"¢ (3.39)

where a. are the roots of (3.38). This expression may be simplified by substituting

w_'(a.) = ,,,,,w, (a,,) and w; (a,_) = qw, (a.). Then, one can write down the residue

series solution for the field in the shadow zone as

G(_, '7, q) = -2_r _/2 i _ q,
e '°-' (3.40)

Further, from the aforementioned Wronskian relation, and from the definition

of the a_ roots as solutions of w_ (a_) = qw, (a,,), it can be shown that v'(a,,) -

qv(a.) = -I/w: (a,,). Thus, a more compact expression for the above residue series

solution is
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2 r /2i "---" [cl, --q2]wI
(3.41)

In this way, each of the a, poles is identifiedwith a single creeping wave

and the fieldin the shadow zone can be depicted as a superposition of an infinite

number ofcreeping waves. Each creeping wave originatesat the grazing point of the

surface,travelsalong a geodesic of the surface,and continuously sheds rays intothe

penumbra and shadow zone. The shed rays leave the surface along tangent lines.

Fig.(3.4) shows the location in the complex plane of the firstten a, poles for the

plywood and carpet-on-plywood surfaces.The real and imaginary parts of a, are

positive in accord with the notion that the creeping wave attenuates as ittravels

along the surface and as itsheds rays. When the listenerisdeep within the shadow

zone, the series(3.41) israpidly converging, and in some cases itsufficesto keep

only the firsttwo or three terms. However, as the listenerapproaches the lineof

sight,more and more terms need to be kept. In general, as _ becomes small, many

terms must be kept because the reduction in magnitude of succesive e_-e terms

becomes small. Also, as mentioned above, the solution reliesupon a sufficiently

small value of r/. It has been suggested elsewhere that _ > WI/2 is a necessary

criterionfor the applicationof thissolution.The computational resultsbased upon

this solution are discussed in chapter 8.

One clear advantage of thisapproach isthat one need calculatethe roots, a,,

only once for a particularq. This implies that only the functions wl (a, - r})and

e_°'_ need to be recalculated at differentspatialpoints. This attribute offersthe

potential for significantcomputational savings over other forms of the solution.

Thus, (3.41) is the equation of choice when the listeneris located in the shadow

zone.
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3.8 Evaluation of the Zeros, z°, involved in the Creeping Wave Series

The only remaining difficulty is to calculate the poles am which, of course, are the

roots or zeros of (3.38). In order to do this, it is helpful to rewrite (3.38) in terms

of the Airy function itself and then to note certain properties of the new equation.

Letting a. "" z,,e -_2_/s , the equation for the zeros, z,, is

Ar - pAi( .) = 0 (3.42)

where p = qe -_2"/s. It has been stated that 0 < arg(q) < 7r. Thus, -21r/3 <

axg(p) < _r/3. In the following discussion, no restriction on the phase of p is

assumed. However, in the end, the above restricted phase range of p proved to be

important because, for such a range of p, all of the a, zeros were found to lie in

the first quadrant. Is

The Newton-Raphson method can be used to solve numerically for the z. zeros.

As will be shown later, the zeros of Ai(z) and Ai' (z) are well known. Let z'. be the

n 'h zero of Ai'(z). Then to find a root of (3.42) for small p, let z. "- z'. + A, and

write

f(A.) = Ai'(z'. + A_)- pAi(z'. -F A_) ----0 (3.43)

where A,, is a small and generally complex number. Application of the Newton-

Raphson method of solving for A. resultsin

Ai'(z" + A_.)- pAi(z'. + A_)

A_,+_ =A_- (z_+A_--f)Ai(z'.+A_)
(3.44)

where A ° = 0.

(3.44) recursively. That is, when p is not small, then a sequence of intermediate

zeros, _,, which axe zeros of (3.42), can be found for a sequence of intermediate

values of p. If the sequence of intermediate p values converges upon the true value

of p, then the sequence of intermediate zeros, _, should converge upon z,. For

example, a sequence of intermediate zeros could be found which correspond to a

When p is not small, the z. zeros stillcan be found by using
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sequence of intermediate p values, all of which have the same phase as the true

value of p. The method consists of picking an initial p whose phase is that of the

true p but whose magnitude is small enough that the Newton-Raphson method

converges upon an associated intermediate zero, _._. The new _ can be substituted

for z_ in (3.44). Another intermediate p, whose phase is that of the true p, but

whose magnitude was chosen to be incrementally larger than that of the previous

intermediate p, can be inserted into (3.44). Then, the Newton-Raphson method will

yield a new intermediate zero, _. In this way, for a given phase of p, the Newton-

Raphson method can be employed to march along the n root (zero) trajectories

from 0 --* IPl.t The same method can be used when [Pl is large except that z'_

00 in (3.44), where z_ are the zeros of Ai(z). The difficultyshould be replaced by z,

here is that, when IPl is not large or small, the method requires a relatively large

number of evaluations of the Airy function and its derivative. These evaluations

require a considerable amount of computation. Another approach is to find a z_

such that, if the Newton-Raphson method, beginning at z_, were applied to (3.42),

the method would always converge upon z_ and do so in relatively few steps. Such

a number as z_ is referred to as an approximate zero. The remainder of this chapter

is concerned with finding approximate zeros of (3.42).

To begin, an idea of the nature of the zeros z_ can be obtained by examining

certain properties of the Airy function and its derivatives. Toward this end, one

notes that Ai(z) = Ai(_) (an example of Schwarz's principle of symmetry), where

denotes the complex conjugate of z. Thus, it is also true that z_ (_) = z_ (p).

So, for arbitrary complex p, one need only consider 0 (__ arg(p) g _r. One also

notes that Ai(z) and its derivative are real when z is real. This is easily seen from

the fact that the power series expansion of Ai(z) has all real coefficients and is

_" In this context, a root trajectory is a path in the complex plane traced out by the

continuous sequence of roots associated with a continuous variation of [pJ from sero to

infinity for a given phase of p.
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absolutely convergent for allz (See appendix B). Thus, when z. isreal,p must be

real. Conversely, since z.(_) - z_ (p),and also since _ = p when p is real,then

z_(p)= _ (p)whenp _ real.Thiscanonlybetrueifz.(p)isreal.Sincethe

statement and its converse are true, then the contrapositive and itsconverse are

true,namely, that when p iscomplex, z,_iscomplex and vice versa.

Another usefulfact isthat allof the zeros of Ai(z) and Ai'(z),labeled z° and

z'_,respectively,are realand negative. These zeros are interlacedalong the negative

real axissuch that

, o , o , (3.45)0> z 1 > z_ > z 2 >z 2 > z s >...

The first ten of these along with an asymptotic approximation for the rest cart be

found in various mathematics handbooks. 1_ One also notes that when p = 0,

' Further, sinceFen -" Zn "

Ai"(0) =0 Ai'(0) <0 Ai(0) >0 (3.46)

one can conclude that, for real p, as p _ +oo, the zero z,, travels from z" to

' to 0 In the case of0 and that as p _ -oo, the zero z. travelsfrom z. z._ i.Z n ,

n = 1 and p _ -oo, the zero z. travelsfrom z_ to +oo where Ai(x) and Ai'(z)

asymptotically approach zero. Thus, the entirereal axis is divided into segments

of z,,root trajectories,each segment occupying that part of the real axis between

successive points in the sequence

t 0 I I
(O0, Zl ,"l ,"2,ZO,Z3,. . .). (3.47)

The segments correspond alternately to negative and positive values of the real

parameter p.

When p iscomplex, itwas shown that the zeros z_ are always complex. This

implies that the complex root trajectoriesnever cross the real axis. However, the

complex root trajectoriesconverge upon the real axis when IPl-'+0 and [p[_ oo.
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What are the complex root trajectories?To get at that question consider each

root z_ to be a function of the parameter p; that is,write z_ -- z_ (p). Then

differentiate(3.42)with respect to p, and employ Ai"(z) = zAi(z), to show that

dz, 1
_ (3.48)

"dp z_ - p2

Immediately, one notes that z_ = pa is not a valid root. This result is fortunate

since otherwise (3.41) could be unbounded. (This result can be proven formally

with the help of the Argument Principle of complex analysis.) The shape of the

trajectories can be ascertained through inspection of (3.48). Let p = Ip[e 's. Since

z, = z', when IPi = 0, consider how the trajectories leave z" when IPl is small. In

this case, one can write

C) Zn e i ( e - 'r )

_ , when IPl << Iz',l (3.49)
alpl Iz'_l

Soas 0 = argCp)goesfrom0 -_ #, arg(a_/alPl) approximately goesfrom -Tr _ 0,

for [p[ << [z', I. For instance, when 0 = O, cgz,,/alp[ is negative and real, and when

0 = _r, Oz,,/alp I is positive and real, as was deduced previously. Similarly, since

o when Ipl is large;o when [Pl _ oo, consider how the trajectories approach z,Z_ = g_

in particular, when [p[ >> [z° [. In this case,

az_ e i(*-s)
0 (3.50)_ , when Ipl>>z_

alpl Ipl_

Soas 0 = arg(p) goesfrom0 -_ _, arg(a_/alpl) approximately goes from _r _ O,

for Ipl_ Iz°I.

With similar reasoning, one can sketch out the approximate trajectory for any

0 as [Pl goes from 0 _ _. With the exception of those trajectories emanating from

and heading toward positive infinity, the result is that the trajectories are the

shape of smooth convex curves connecting adjacent points in the sequence (3.47).

In fact,when 101or I_- 01is lessthan2_/3, the curves are roughly circular arcs.
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The trajectories all lie in the second or third quadrants, and near the negative

real axis when 101 is not near _r/2. Of course, each of these trajectories has an

image trajectory located in the other quadrant associated with _. Furthermore, the

trajectories which move the furthest from the negative real axis before returning are

those trajectories associated with 0 _ _r/2 (or -_/2). Somewhat curiously, when

one considers all of the trajectories which originate at z', 0 - r/2 (or -_r/2) is not

the transition value of 0 below which the trajectories travel to z ° , and above which

0 The actual transition value is somewhat greater thanthe trajectories travel to z__ 1.

0 = _r/2 (or less than 0 = -r/2) such that p2 lies in the third (or second) quadrant

near the negative real axis; that is, p2 is potentially near to z, when 0 = _r/2 + 5

(or when 0 = -lr/2 - 6), where 6 is a relatively small positive number. For such 0,

dz,,/dp does not exist as seen from (3.48).

A power series representation of z_ (p) can be constructed for the case of IP21 <

Iz_ by substituting
oo

,,, = akp (3.51)
k=O

' One finds that al = 1/z'_ and the remaining coefficients arewhere ao - z_.

(k- 1)ak-1 -alak _ k___ (m + 1) a_+lak-,,, k = 1,2,... (3.52)a,,+l=  o(k+1) (k+11
m,._--I

The first two terms of (3.51) comprise the often stated approximation of z, for small

p. A complementary power series representation of z, (p-1) can be constructed for

the case of Ip2 ] > ]z_ I. The series can be written as

o 1 b,
Z_ -----Z,_ -k - -t-/_.4 7

(3.53)
P l:ffi3

The coefficients are found from

e-3
1

(m + 1)be-,_-sb_+l ...b_ = ._ £ = 3, 4, (3.54)
fn----O
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The series (3.53) does not converge except for very large IP[; and although (3.51)

converges, it encounters difficulty for moderate values of [Pl. However, the utility

of these series is in their ability to generate approximate zeros z: (p) for z, (p).

Consider the problem of finding z_ (p) when arg(p) = 8.1 ° (as in the case

of the plywood surface) and when axg(p) = 46.5 ° (as in the case of the carpet-

on-plywood surface). Fig.(3.5) shows the root trajectories as calculated by the

Newton-Raphson method at small increments Alp ] = 0.02 from IP[ - 0 -, 10.

(This same trajectory can be obtained by solving (3.48) with a standard Runge-

Kutta method for ordinary differential equations.) Also shown are the approximate

root trajectories obtained by successively including more and more terms in (3.51)

and (3.53). The figure can be deceiving in that the point for a given IP[ on an

approximate root trajectory tends to be further along the trajectory than is the

actual root. However, the trick is that the approximate root trajectories provide

the location of a point or points from which the Newton-Raphson method can then

converge to the actual root. Convergence tests were run where the number of series

terms kept was varied along with the value of arg(p). The best results of these tests

were obtained when 6 terms were kept in (3.51) and when 4 terms were kept in

(3.53). Thus, a reasonable conclusion was to limit the series to a finite number of

terms and calculate approximate roots from the abbreviated series

6

z_ -- _ a_p k when [p2[ < iz_l (3.55)
k----0

and

0 1 • be

z: -- z,, 4" - 4" _ pe when Ip21> [z, I (3.56)P

The convergence properties tend to hold true for a wide range of arg(p) and for any

n of z,. Thus, a relatively fast way of finding z, when p is not small or large is to

approximate the z_ by (3.55-3.56) and then apply the Newton-Raphson method to

polish the zero.
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Figure 3.5 Example root trajectories when arg(q) is equal to that for the

plywood and carpet-on-plywood surfaces, respectively. The trajecto-

ries rolling over to the right are associated with the plywood surface.

The discrete symbols, (o), represent the actual root trajectories found

through a recursive application of the Newton-Raphson method. The

solid lines represent the approximate root trajectories predicted through

the calculation of the first few terms of the series solutions (3.51) and

(3.53). J indicates how many of the first j series terms were used.
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Exceptional cases may exist in which the optimum or required number of terms

kept in the series (3.55-3.56) is different. As the accuracy of the z_ approximations

worsens, the propensity of the Newton-Raphson method to diverge increases. Safe

guards should always be included to assure that the Newton-Raphson method is con-

verging. When the Newton-Raphson method diverges from a particular z_,, one can

almost always either increase or decrease the ]9] used to generate the z_, such that

a new z_ is generated for which the Newton-Raphson method does converge. One

can then increment IP[ and return to the 191 of interest with the Newton-Raphson

method. In this way, even if (3.55-3.56) do not generate a viable approximate zero

for a particular [9[,they are likelyto generate a viable approximate zero for a Ipl

nearby.

A word of caution is in order concerning the zl zeros when arg(p) _ 2_r/3 or

greater but less than or _ 4_r/3. In these cases, the magnitude of the z_ zeros

grows without bound as ]p] --* co. Although it seems reasonable from the previous

discussion of the general characteristics of all zeros of (3.44) that zl zeros do exist

for all P, it may become increasingly difficult to flnd these zeros for the phase range

of P stated above. This is particularly evident when one realizes that the distance

between z_ (9) and z_ (Pq- Ap) grows as p _ co. Hence, the sensitivity of the method

to errors in the starting point increases as [P] increases. This behavior is limited to

the z_ zeros (i.e. the zeros of the trajectories that have an endpoint at z'z ).

3.9 Summary

In summation, when the listener is well into the bright zone, the well known

geometric acoustics solution

P = P, e'k_ ÷ P,[A(O)/A(I)] _/2_¢'kf'e'kt (3.1)



49

is valid.

approximate forn of (3.1) was shown to be

where

In cases where the point of reflection is not too far from the apex, an

(3.2)

Q = [(4/9)x 2 + (2/3)Ry] 1/2

¢ = (2k/R2)[Q 3 - (8/27)x 3 - (2/3)Rxy]

This solution was used as the outer boundary condition to solve an asymptotic form

of the Helmholtz equation. The resulting solution, valid on and near to the curved

surface, was termed the Fock-van-der-Pol-Bremmer function

1 _(,-_)- , (,,-_) d_ (3.21)aC_,_,q)= _ oo w,(_) qw,(_)_'

and was considered the general solution to the problem of diffraction of a plane wave

over a curved surface of finite impedance. Several alternate forms of this equation

exist. In the penumbra, another form was shown to be

G-_ + _, (3.26)

where

and

1

:/o"
1

:/o"

e"'"'"' "'(_)- qe,2./,_(_)

e,.¢ v'(s) - qv(s) (s _)ds
w_(s) qw,(s)w, --

= [e-_e'/Se'e'H(y)-_ ei_ eiz_a/3 ]." Ao (Y)

(3.27)

(3.28)
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Thus, when the listener is near the apex, the solution can be interpreted as the sum

of a knife-edge diffraction term and two so-called background terms. The back-

ground terms eventually vanish as the listener moves away from the apex. How-

ever, at such locations, it was argued that the dimensionless height Y is probably

no longer appropriate. Instead, an alternate dimensionless height, such as

= y (3.33)

may be substituted for Y to yield the well known knife-edge diffraction formula for

listener locations far from the apex. In the shadow zone, an appropriate form was

shown to be

= C3.41)e(_,,,q) = 27r'/2i ___
n.=_l

Each individual term of the series can be interpreted as a creeping wave such that

the field in the shadow zone is seen as a superposition of such waves. Typically,

only a few of these terms are needed to describe the field in the deep shadow. The

series is believed to converge when _2 > r/.



51

CHAPTER IV

EXPERIMENTAL FACILITY AND PROCEDURE

Scale model experiments were conducted as part of the study of propagation of

sound over curved surfaces and its relation to the more complex problem of long

range outdoor sound propagation over undulating terrain. This chapter contains

a description of the laboratory and experimental methods used in the study. In

general terms, the laboratory consistedof a largetable on the center of which rested

one or two hollow cylindricalridges. Side by side,the ridgesspanned the width of

the table. A spark generator, which was located near one end of the table,was

used as an acoustic source. Near thissame end of the table,a referencemicrophone

was given a fixed (permanent) position.This microphone was positioned such that

itcould receive the incident acoustic pulse prior to the axriv_lof any reflections.

Another microphone was used to make _e]d measurements of the acoustic pulse after

ithad been reflectedor diffractedby a ridge. The microphones were connected via

a prea_npUfier,power supply, and amplifierto an A/D data collectionboard and

associated personal computer. Data reduction was performed by software stored in

the personal computer. Of interestwas the influenceof the ridgesupon the acoustic

signal in terms of insertionloss.The insertionlosswas inferredfrom the ratio of

the digitalFourier transform of a pulse received by the fieldmicrophone to that of

a pulse received by the referencemicrophone. The detailsof thisprocedure and the

laboratory follow.
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4.1 Laboratory Design

The laboratory was housed within a standard university small laboratory room

of dimensions 8.2 m by 6.1m by 4.3 m and located on the campus of the Georgia

Institute of Technology. The walls of the room were cinderblock, the floor was

tiled, and some of the wails were lined with shelves. In no sense did this room

approximate the ideal of an anechoic chamber.

Four tables were made to be used for the scale model experiments. Each

table was 1.2 m wide by 2.4 m long and 0.9 m high with a table top made of 3/4 in

(_ 2 cm) CDX plywood. Each small table frame was constructed of two-by-six (5 cm

by 15 cm) yellow pine grade #1 planks; the table legs were constructed of four-by-

four (10 cm by 10 cm) yellow pine frade #2 beams. The fasteners holding the table

together were machine bolts and wood screws.

The table frame was made by running two 2.4 m length two-by-sixes parallel

to each other, 1.2 m apart. Then five equally spaced two-by-sixes were mounted

in between the first two. Next, a shelf was cut into the four-by-fours so that they

would fit into the corners of the frame and still leave some of the frame resting on

the shelf. Each four-by-four was bolted into the frame with three machine bolts.

Finally, the CDX plywood was placed on top of the frame and secured with wood

screws around the perimeter. The four small tables were bolted together, forming

one large table 4.9 m long by 2.4 m wide.

Two identical curved surfaces were constructed to be mounted on the large

table and used as laboratory scale models of topographical ridges. Each surface

was formed by bending a 1/4 in CDX plywood sheet, measuring approximately 4 ft

wide by 8 ft long, over two exterior plywood ribs. The ribs were cut such that their

top edges were circular arcs 2.5 m in radius. These ribs were placed parallel to

each other and equidistant (_ 17 in) from the lengthwise centerline of the plywood

sheet. Thus, two cylindrical ridges approximately 32 cm high and 235 cm along the
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base were formed. Each ridge was mounted upon a separate sheet of 3/I4 in CDX

plywood which was the same size as the top of one of the four smaller tables. A

ridge(s) were placed upon the table such that the lengthwise centerl/ne of the table

top and the centerline arc of the ridge(s) were coplanar. This plane was termed the

center/_neplane.

Large rectangular stripsof a 1/4 in thick commercial carpet were cut so as to

fitatop the plywood curved surface. These stripswere laterplaced on top of the

plywood curved surface(s)to provide a second type ofsurface impedance distinctly

differentfrom that of the bare plywood surface. The carpet had a hemp mesh

backing interspersedwith glue which held the carpet fibersin place.

Two BrSel & Kj_r 4136 quarter-inch condenser microphone cartridges were

used for making the sound pressure measurements. Each microphone cartridgewas

attached to a Br_el & Kjmr 2615 cathode follower(pre-amplifier)via a Br_el & Kjmr

UA0035 adaptor. The cathode followerand the microphone cartridgewere powered

by a BrSel & Kjmr 2801 microphone power supply. This assembly was referred to

as a microphone. Each microphone cartridge had a dynamic range rating of up

to 180dB, and a rated sensitivityof _ lmV/Pa. Further, the diaphragm of each

cartridgewas approximately 6.35mm in diameter, and was covered by a protective

grid housing which screwed on to the tipof each cartridge.More detailsabout these

microphones can be found in the manuals availablefrom Br_el & Kjmr.

One of these microphones, referred to as the reference microphone, cartridge

serial#1200301 with open circuitsensitivityof 1.26mV/Pa, was positioned such

that the sound arrivingat itduring the time intervalassociated with the directwave

arrivalwas as closeto freefield(no reflectedarrivalsduring the time intervalof the

directarrival)as possible and such that the microphone casing and suspension did

not impede or interferewith propagation of the acoustic wave to the fieldmicro-

phone. Specifically,the reference microphone was suspended at a height roughly
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three times the height of the ridge (32.4 cm) by three separate lines of 1/16 in nylon

cord. The other microphone, referred to as the field microphone, cartridge serial

_1200305 with open circuit sensitivity of 1.32 mV/Pa, was mounted upon a Fisher

Scientific Flexiframe portable stand by way of a burette clamp. The microphone

was held by the clamp such that the microphone diaphragm was roughly 9 cm for-

ward of the clamp itself. When needed, a 6 ft long, 5/8 in aluminum tube acted as a

horizontal extension of the clamp, the microphone held within and protruding out

of the tube.

Each microphone was connected in line with its own low current amplifier. Each

amplifier consisted of a Motorola LF351N FET operational amplifier microchip,

which had a high voltage slew rate of 13 V/_s and a fiat response up to 100 kHz.

The amplifier was designed to produce an amplified, non-inverted signal. A set of

nine possible gains was achieved by the inclusion of an array of feedback resistors

controlled by an external multi-position switch. Gains from unity to 100 were pos-

sible. In all of the subsequent experiments the op amp position switch was set to

either _:5 or _6. These two settings corresponded to measured gains of approxi-

mately 5.8 and 11.1, respectively. Each amplifier was powered by two parallel sets

of four 9 V batteries. The transient level of the parallel sets of batteries was guar-

anteed by parallel 0.1 _F capacitors. The amplifier was enclosed by an aluminum

box which was grounded to the batteries. The box served as a precautionary shield

against electromagnetic noise generated by the spark source or other instruments.

The amplified analog signalof each microphone was converted to digitalform

by an integrated hardware and software system produced by RC Electronics Inc.

and called "Computerscope ISC-16." This system consisted of a 16 channel A/D

board, which was inserted into the IBM PC, an external instrument interface,and

the scope driver software. The system was capable of recording an input voltage
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signal with a peak to peak range of 20 volts centered at zero and of resolving it to

12 bit accuracy, or equivalently to approximately 1 part in 4000.

Thus, the data acquisition system was composed of two microphones, two am-

plifiers, an analog-to-digital converter, and an IBM personal computer (Fig. 4.1).

The system was capable of gathering data at an aggregate rate of 500 kHz and pos-

sessed an aggregate memory buffer of 64 kilobytes. Software purchased from RC

Electronics Inc. enabled the digitized data to be downloaded into standard ASCII

coded files which were subsequently processed by the PC.

The sound source was an electric spark generator (Fig. 4.2). The design of the

spark generator was inspired by a photo of an apparatus designed by Dr. Mendel

Kleiner at the Chalmers Institute of Technology. The important features of the

spark generator were as follows. A gap of approximately 1 mm separated two stain-

less steel rods or electrodes. (Originally, copper electrodes were used; however,

problems were encountered with the tips either exploding or ablating away.) The

electrodes were pointed at each other forming a spark axis. Each electrode was ap-

proximately 1.5 mm in diameter. A third electrode was positioned midway through

the gap and pointed perpendicular to the other two electrodes. All three electrodes

were held in place by a narrow, wedge-shaped plexiglass block. (The shape was

chosen to minimize reflections from the block.) Each of the first two electrodes was

connected by an insulated copper cable to one point of a 1 _F, 10 kV (nominal)

capacitor. One point of the capacitor was grounded while the other was connected

to a 10 DC kV variable power supply through a 10 W resistor, nominally rated at

10 Mf_. The third electrode was connected to a standard automobile ignition coil

by way of a 10 kfl resistor.

The spark source was oriented such that its axis was perpendicular to the

centerline plane and such that the center of the spark gap lay in that plane. In

this way, the output of the source was expected to be circularly symmetric in the
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Figure 4.1 Schematic of the interior of the laboratory room used in the

study. Shown is the sequence of data processing associated with a single

firing of the spark source. Reference and field microphones were sta-

tioned in front and behind of the ridge, respectively. A triggering device

activated the data capturing system simultaneous to the firing of the

spark source. The analog signals of the two microphones were sampled

at a rate of 250 kHz, digitized to 12 bit precision, stored in a 64 kilobyte

memory buffer, and low pass filtered. Interesting portions of the total

data field were then input to a discrete Fourier transform program. The

output of this program was interpreted as the Fourier components of

the original waveform portions.
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Figure 4.2 Photo of the spark source electrodes and the wedge-shaped

pIexiglass block which held them. A gap of approximately 1 mm sep-

arated two of the 1.5 mm diameter stainless steel electrodes. A third

electrode delivered a low current, high voltage electric pulse to the gap.

The subsequent ionization of the air in the gap enabled the charge stored

in the 1 #F capacitor to travel to ground.
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centerline plane, and also symmetric about that plane. The nature of a typical

waveform produced by the spark source is discussed in detail in the next chapter.

A typical waveform had a peak acoustic pressure on the order of 130 Pa at 1 m from

the source, a pulse duration of approximately 40/_s, and which was broadband from

5 kHz to at least 50 kHz (Fig. 4.3).

The spark discharge was initiated by a manual trigger attached to the ignition

coil. The coil delivered a low current, high voltage (_ 10-15 kV) electrical discharge

through the tip of the third electrode. This discharge ionized the gap separating the

first two electrodes, which were the power electrodes. Once the gap was ionized, its

electrical resistance plummetted, and the charge stored in the capacitor traversed

the gap to ground. During the transition to ground, some of the electrical energy

was converted into heat. The subsequent conduction of this heat resulted in an

expansion of the air around the gap, and, thus, an acoustic pulse as well. An

antenna situated near the spark source transmitted the spark's electromagnetic

pulse to an external TTL port associated with the A/D board. Data collection was

triggered by the reception of this pulse.

A model wedge was also constructed with the anticipation of comparing the

experimental data associated with a curved ridge to that associated with a wedge.

Basically, the wedge consisted of a plywood body, made of two planks of approx-

imate dimensions 3.Sft × 12 in × 1/4 in, with a stainless steel tip formed from a

3 ft x 1 ft sheet. The planks were joined such that they shared a common lengthwise

edge and such that there was a 34 ° angle between the planks. This position was

fixed by attaching the unjoined lengthwise edges to a plywood base. The stain-

less steel sheet was creased along its lengthwise centerline, then folded there, and

placed atop the shared edge of the planks. In this way, the crease formed the apex

of the wedge. The entire wedge received two coats of spray paint. The wedge was

approximately 13 in high with a base of 8 in.
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Figure 4.3 A typical waveform at a distance of 1 m from the spark gap,

and the results of a discrete Fourier transform of the waveform data. In

general, such waveforms had a duration of 40/_s, and a peak acoustic

pressure of 130 Pa. The transformed data revealed a broad frequency

band of Fourier components of the original waveform.
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4.2 General Procedure

The general experimental procedure was similar for all of the experiments reported

here. Most of the experiments used two microphones, one at a reference point in

the free field, and the other at a desired field point. The reference microphone was

oriented such that the normal to its diaphragm was in the centerline plane and, in

addition, was pointed directly at the spark source gap. A microphone alignment

or mounting of this type was referred to as normal. The field microphone was also

aligned normally, although the normal to its diaphragm did not always point directly

at the source. (A transverse alignment was when the normal to the microphone

diaphragm is perpendicular to the centerline plane.) The two corresponding analog

voltage signals, which were output from the microphones, were amplified, sampled

at intervals of 4.0 _s, and digitized to 12 bit precision. A constant was automatically

added to each data sample such that the mean of the data sample was approximately

zero. Since the voltage increment registered by a microphone was opposite in sign to

that of the corresponding pressure increment, the sign of the shifted digitized data

was reversed. Then the data sets were filtered by a lowpass digital filter with an

upper cutoff frequency of 75 kHz. A waveform portion of interest and representative

of what would be received if there were no undesired reflections contaminating the

data was selected. Data points outside these portions were then replaced by zeros.

Then, two abbreviated time windows were manufactured such that each waveform

portion of interest was centered in its new window. These windows had the same

duration (usually, 500×4.0#s), but usually not the same time beginning. In this way,

two %vindows" containing a reference microphone waveform and a field microphone

waveform, respectively, were generated. The replacement of the extra data points

by zeros was in accord with the expectation that an acoustic pulse has negligible

residual effect on the ambient pressure, and that the acoustic pressure before and

after each waveform would ideally be zero. The digital Fourier transform of each
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window wascomputed and interpreted as if the value of the acoustic pressure were

identically zero before the start and after the end of each window.

The Fourier transform algorithm used in the subsequent calculations was taken

from a listing of a Fortran program developed by Norman Brenner and Charles

Rader of the MIT Lincoln Laboratory circa 1967 and which, according to the com-

ment statements included in the program listing, had some relationship to what was

described in a paper _Fast Fourier tranforms for fun and profit _ by W. Gentleman

and G. Sande, presented at the 1966 Fall Joint Computer Conference. As used in

the data reduction process of a generic experiment, the program returned a set of

N numbers q(n) from an input set v(n) according to the relation

N

_rL=]

Thus, if the input set was described by

v(n) = Kp[to + in - 1)At] (4.2)

then

where

(4.3)

m-1 N

/_ -" NA-"---'_ for 1 < rn < _- (4.4)

From these relations, the value of the Fourier transform was identified once one

knew the time to at the start of each record, the number N samples, the sampling

interval At, and the apparent transduction constant K (volts per pascal). In all

cases, the actual measured time domain data occupied less than 20% of the 500 × 4#s

total time domain duration and, as mentioned above, was centered in the 500 point

window. For this reason, no adjustment, such as obtained through the application of

a Hamming window, was made to the finite time window. For time windows such

as these, one can show that such an adjustment has a negligible effect upon the
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Microphone Calibration History

(with B&K 4220 Pistonphone)

Reference Microphone Field Microphone

Date Op Amp K Op Amp K

Setting (mV/Pi) Setting (mV/Pa)

12/22/86 5 3.015 5 4.776

2/10/87 5 3.ooo 5 4.865
6/22/88 5 2.980 6 9.425

9/10/88 6 5.542 6 9.297

9/14/88 ° 5 2.890 5 7.724

9/14/88" 5 3.027 6 15.120

1/6/89" 5 3.015 6 16.144

8/12/89 5 3.135 6 15.433

Table 4.1 Values of the transduction constant, K, at various dates. K

was deduced through the use of a B& K pistonphone. The _Op Amp

Setting" number refers to one of the nine possible gains of each operational

amplifier. The gain is included in the transduction constant. The asterisk

denotes the installation date of a new preamp for the field microphone.

transformed data. The transformed data was interpreted as the discrete frequency

distribution of the transient signal. Such frequency data was obtained at 500 Hz

intervals from 0 to 125 kHz.

The transduction constant was determined through the use of a Brfiel & Kjmr

4220 pistonphone. The pistonphone was calibrated by Brfiel & Kjmr in July of

1986 such that it produced a nominally pure tone of 250 Hz and 123.9 dB re 20/_Pa

(or _ 31.34 Pa rms) at the coupler termination. A transduction constant was de-

termined by capturing a minimum of 40 cycles of the pure tone with each micro-

phone, calculating an RMS voltage over these 40 cycles, and dividing this voltage

by 31.34 Pa rim. Table 4.1 shows the value of the transduction constant for each

microphone transmission line at various dates.
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In many of the experiments, the objective was to obtain a measure of the

insertion loss at a given field point, where the insertion loss was defined as

(4.5)
IL = -20 log_ 0

where pCm) and P_(m) were equal to ACre)q(m) for the field and reference mi-

crophones, respectively. Here, A(m) included the adjustment for the frequency

response of each microphone as well as adjustments for absorption in air and spher-

ical spreading. Absorption in air was calculated from the ANSI standard formula

where the pressure decrease due to absorption is written as

p = poe -_" (4.6)

Equivalently, the change in sound pressure level due to absorption is

AIL, =-201og_0[Pl=8.69as , indB. (4.7)

The variable, s, is the propagation distance, in meters, while the parameter a is

defined to be the attenuation coefficient due to atmospheric absorption and has

units of (Np m-t). (The neper, Np, is the natural logarithm analog to the decibel,

dB, such that 8.69 dB = 1 Np.) a can be written as the sum of four terms

-- Otvl _" Ctrot -_ Otvib,O "_ (_ib,N (4.8)

where ac_ represents the classical absorption, a.ot represents the molecular absorp-

tion due to rotational relaxation, and a,,_,o and a,,.,,_r represent the molecular

absorption due to vibrational relaxation of the oxygen and nitrogen constituents of

air, respectively. With this notation, one can write

+o.o,= ×:o-,.f, ::
\ P. / k_0] (4.9)
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and

-- 1+ (///.,,)=

where i - O for oxygen and i --Ar for nitrogen. Here,

c 343.23 (_o) t12---- , in m/s (4.11)

and (aA)==.,_ is a relaxation parameter described physically as the maximum ab-

sorption, in Np, in a distance of one wavelength due to relaxation. Its standard

expression is

(aA)==x,,= 35 '

where 9_ is the characteristic vibrational temperature and X_ is the fractional molar

concentration. For dry air, these parameters have the values

00 = 2239.1K 0_ = 3352.0K

(4.13)

Xo - 0.209 X_v - 0.781

Finally, f,._ is the relaxation frequency, in Hz. Expressions for this parameter are

lO'h0.o5+ h ]f,-,o = _, 24+4.41X
0._hJ.teo

(4.14)

/"" -- 9+

In all of the above expressions, P,0 = 101.325 kPa, To = 293.15 K, and p,, T, f,

and h are atmospheric pressure (in Pa), temperature (in K), acoustic frequency (in

Hz), and molar concentration of water vapor (in %), respectively. Typically, the

large variation in the relaxation frequencies due to variations in h account for the

largest variations in a, while the direct effect of temperature on a is much smaller.

However, h is dependent on T and in this way temperature has an added effect. It

so happens that variations in pressure can be handled through a scaling relationship

involving f and h. The standard lists the accuracy of the above formulae for a at

:i:5% for 2 < f < 15 kHz and 10% < h, _< 100%, where h, is the relative humidity.
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In the more extended frequency range of 4 x 10 -4 __ f/p, _ 10 Hz Pa-t, the

standard lists the accuracy of a at < ±10%. As examples of the predicted losses

due to absorption, when h, = 50%, T = 20°C and s = 100m, AIL, = 4.13dB

at f = 5 kHz while AIL° = 14.69 dB at f = 10kHz. These numbers indicate the

nearly quadratic growth of AIL, with f for a given s. For the circumstances of the

laboratory, the propagation distances were restricted to 4 m or less.

In addition to the adjustment for absorption, a correction of 6 dB per dou-

bling of propagation distance was made for spherical spreading. The losses due to

absorption were assumed to be uncoupled from the losses due to spherical spread-

ing. Further, the data was corrected for the frequency response of each microphone

cartridge. Each of these frequency responses was measured by BrSel & Kjzer techni-

cians. In regard to the ambient conditions in the room, casual observations revealed

that the they were relatively uniform and prone to only small variations with time.
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CHAPTER V

PRELIMINARY EXPERIMENTS AND ANALYSIS

A set of preliminary experiments were performed in order to establish 1) the nature

of a typical incident waveform, and the effects of the finite size of the acoustic

source and microphones, 2) the ambient speed of sound and the speed of sound in

the plywood table top, 3) the directionalityof the source, 4) the rate of propagation

lossesdue to spreading and absorption, and 5) the size of nonlinear effects.The
O

objective was to gain a qualitativeand quantitative understanding of the source

waveform, of the free fieldpropagation effects,and the effectsof the microphone

on the recorded shape of the waveform. Although allof these effectsdistorted the

measured waveforms from the actual waveforms, the concern was with the effect

of these distortionsupon the measured insertionloss. In this chapter, the term

"insertionloss"retains itsusual definitionbut isused somewhat loosely in that it

means the magnitude of the discreteFourier transform ofany fieldwaveform divided

by that of itsassociated referencewaveform, in dB. Even ifno objectwas "inserted"

between the referenceand fieldmicrophones, the above ratio,in dB, was referredto

as an insertionloss.For example, ifa singlewaveform was recorded at two different

freefieldlocations,then one could stillcalculatean insertionlossbetween the two

locations,even though a zero insertionlossmight have been predicted.
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As is discussed and shown below, the measured incident waveforms contained

a certain anomalous feature not found in a standard N-wave or short duration

sine pulse. It was unclear whether this feature was due to the spark source or

the microphone or both. With regard to the source, the relationship between the

shape of the incident waveform and the discharge voltage, or the gap separation

distance, or the orientation of the spark gap was unclear. As for the microphones,

it was unclear what effect their orientation had on the recorded waveforms and,

more importantly, on the measured insertion loss.

5.1 Incident Waveforms

Figs.(5.1-5.2) show typical waveforms and their amplitude spectra (the magnitude

of the discrete Fourier transform), at a distance of approximately lm from the

source, which resulted from spark discharges at voltage levels of 1.5, 2, 2.5, 3,

3.5 and 4 kV. In the time waveforms, two trailing troughs were usually found to

follow the initial crest. Apparently, the size of the second of these troughs was

not a consistent proportion of the size of either the first trough or the initial crest.

Further, the peak pressure recorded for a 4 kV discharge was approximately 67%

larger than the peak pressure recorded for a 2 kV discharge. All of the peak pressures

were well within the dynamic range of the microphone. Further, if one accepts the

notion that the diffraction effects due to the finite size of the microphone were

proportional to the peak incident pressure (i.e. the shape of a waveform would not

be significantly altered by these diffraction effects), then the shape of a waveform

was apparently also a function of the discharge voltage level. The actual physics

involved in a spark discharge was no doubt complex, and the resulting waveform was
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probably a function of gap separation distance, and electrode material, geometry,

and alignment as well.

The concern was to pick a suitable discharge voltage given the spark source

design parameters discussed in chapter 4. That is, it was desired to produce a

waveform which was loud enough to keep the signal-to-noise ratio large at large

R, but which was not so loud as to introduce nonlinear propagation effects, and

which was of such a shape as to produce a relatively smooth and broad band fre-

quency spectrum. An examination of the discrete Fourier transform of waveforms

measured at various distances from the source showed that the third criterion was

well satisfied by the waveforms produced by the 2 kV or 2.5 kV discharges. Further

tests indicated that sufficiently loud signals could be produced with these discharge

voltages without unwanted nonlinear effects. In fact, a gap voltage of 2.2 kV was

used in most of the experiments. (Interestingly, a gap voltage of close to 4.5 kV

was necessary to initiate an untriggered discharge.) In terms of available electrical

energy, 2.2 kV corresponded to approximately 2.4 J. Typical peak acoustic pressures

at a distance of 1 m were on the order of 130 Pascals. A typical rise time and pulse

duration was on the order of 10 #s and 40_s, respectively. The resulting sound

source was broadband with the peak level residing near 25 kHz.

5.2 Effects of the Finite Source Size

Consideration can be given to the possibility that the finite size of the source con-

tributed to the anomalous shape of the waveform. Almgren performed experiments

with a similar spark source and analyzed the effect of his finite sized source, s° He

assumed that his spark source behaved in a fashion similar to that of short line

source consisting of a continuous smear of identical point sources all sounding in

unison. For such a distributed source, it was possible to appraximate the sound

pressure at a point by taking the integral over the source volume of the Green's
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Figure 5.1 Typical measured waveforms produced by the spark source

when the gap voltage was 1.5, 2, 2.5, 3, 3.5, and 4 kV, respectively. The

measurements were made with normal microphones with the protective

grid in place. The duration of the initial rise and fall cycle was ap-

proximately.40 ps in all cases. The peak acoustic pressure increased as

the voltage was increased. The waveform at 2 kV had a peak acoustic

pressure of approximately 130 Pa at I meter, and had no noticable trail-

ing ripples. Most of the subsequent experiments involved waveforms

generated with 2.2 kV across the spark gap.
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Figure 5.2 Spectra produced from the waveforms shown in Fig.(5.1). Here,

a spectra was defined as the magnitude of the discrete Fourier transform

of a waveform. For a gap voltage of 2 kV, the peak spectrum magnitude

was roughly 210 x 10-5 Pa/Hz and occurred at a frequency of approxi-

mately 25 kHz.
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function multiplied by the source strength distribution21 Let the length of the

line source (e.g. the length of the air gap between the electrodes) be denoted by dg,

and let the distance to a listener be denoted by R. Almgren reported that when the

line source was oriented such that its axis was perpendicular to the line connecting

the source and liltener (as in the experimental arrangement described in chapter

4), then the performance of the line source relative to that of a point source, in free

field conditions, can be represented by

V, ho,, ,,o, = _1 [C(27) + iS(x)] (5.1)
Ppoint .ouree 27

where

x= 2

and C(x) and S(z) are the Fresnel integrals. When k_/8R << I,

e|hnrt line ikd_gz + (5.3)
Ppoint .ounce 24R

For the dimensions of the spark source described above dg _ 1 ram, R = 1 m, and

f = 40 kHz, 5.3) yields

Pihort line
_-,1 (5.4)

Ppointsou tee

Thus, it appeared safe to consider the spark source as a point source, and it also

appeared unlikely that the finite size of the spark source was responsible for the

anomalous shape of the waveform. In addition, the thin (60rail diameter, or

1.5 ram) pointed electrodes were not expected to contribute any significant reflected

or diffracted rays to the incident field.

Wright noted that deviations in the spark path from a straight line could cause

distortions in the incident waveform2 2 Such flutter in the spark was difficult to

quantify but given the dimensions of the spark source is seemed unlikely that this

effect was significant at the frequencies of interest. No further attempt to analyze

this effect was made.
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Figure 5.3 Typical measured waveforms at 1 meter produced by the spark

source when the Kap voltage was 2.2 kV and the microphones were ori-

ented normally and transversely, with and without the protective grids.

Clearly, the overall sensitivity of" a normal microphone is significantly

higher than that of a transverse microphone. Also, the peak pressure

measured with a normal microphone was greater when the protective

grid was in place than it was when the Krid had been removed. The

same effect was not seen in the transverse microphone measurements.
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Figure 5.4 Spectra produced from the waveforms shown in Fig.(5.3).

Again, a spectra was defined as the magnitude of the discrete Fourier

transform of a waveform. The spectrum of the waveform measured nor-

mally and with a grid in place was significantly larger and broader than

any of the others. The spectrum of the waveform measured transversely

was the narrowest with only modest levels present past 25 kHz. The

spectrum of the waveform measured transversely with the grid did not

exhibit the same fall off at 25 kHz.
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5.3 Effects of the Finite Microphone Size

The fact that the microphones were not ideal omnidirectional, point receivers intro-

duced distortions in the measured incident waveforms (Fig. 5.3-5.4). Specifically,

the sensitivity of the microphones varied with orientation and frequency. The cause

of the distortions was attributed to the way in which a microphone averaged the

pressure over its diaphragm face, and to diffraction effects emanating from the

circular edge of the diaphragm.

5.3.1 Microphone Orientation

There appeared to be two sensible ways in which to orient each microphone; as

stated in chapter 4, they were the normal and transverse orientations. A clear

advantage of the normal orientation was the increased sensitivity due to near pres-

sure doubling at the diaphragm face. This was important when the received signal

was" weak, particularly when the signal-to-noise ratio was not too large such as was

found in the shadow zone. However, the sensitivity of a normally oriented micro-

phone was also highly directional relative to a transversely oriented microphone.

That is, the sensitivity of a normally oriented microphone was a function of the

angle of incidence of a ray located in the centerline plane. (Due to circular sym-

metry, the same was not true for a transversely oriented microphone.) Thus, errors

in the normal measurements were present when a microphone measured direct and

reflected or diffracted rays which arrived at varied angles of incidence. In order to

reduce these errors, an effort was made to approximate the direct, reflected, and

diffracted ray paths prior to a measurement and subsequently adjust the orientation

of the microphone such that all rays arrived at the microphone at similar angles of

incidence. The dimensions involved in most of the experiments were such that these

angles of incidence were small, on the order of 15" or less. Thus, it was concluded

that differences between the angles of incidence were even smaller. As measured
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by Brfel & Kj_r, the nominal variation in sensitivity between 0 ° and 30 ° angles

of incidence was not more than 2 dB for frequencies less than 60 kHz. Therefore,

the errors introduced by splitting the relevant arrival angles should have been much

smaller than 2 dB. In this way, the directional effects of the microphones for normal

orientation were minimized.

5.3.2 Pressure Averaging over the Microphone Diaphragm

Another concern was the effect of the finite surface area of a diaphragm and the

fact that the recorded pressure was, in some sense, an average of the pressure at

each point of the surface. Almgren considered a transversely mounted microphone

and neglected diffraction effects from the edges and from the protective grid. In his

case, and under the assumption that the microphone diameter, D, was much smaller

than the distance from the source to the microphone, the relationship between the

averaged pressure and the midpoint pressure is known to be

p= P_.m,mb_,_e,v,r,,. 2_r kD IkD2)-- PIf, point -- _-_k2 2 Zl (S.S)

where S is the membrane surface area, and J1 is the first order Bessel function

which has its first non-trivial zero at kD = 7.664. For D = 6.35 ram, this zero

corresponds to a frequency of f = 66.4 kHz. Table 5.1 outlines the relationship

between the ratio of the averaged pressure to the point pressure and the frequency.

The reduction in P with frequency is attributable to the variable phase of the

incident wave at different points of the diaphragm. The Bessel function, J1 (x),

results from the circular geometry. From this analysis, it was clear that a trans-

versely mounted microphone would tend to suffer significant changes in sensitivity

at frequencies higher than 20 kHz.

The sensitivity of a normally mounted microphone was also a function of fre-

quency due to the same mechanism. However, when D _ R, the effect is small
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Frequency

(kHz)

1

10

2O

4O

6O

66.4

P

1.000

0.959

0.842

0.466

0.088

O.

Table 5.2 The effect of the circular geometry and finite size of the

microphone diaphragm upon the sensitivity of a transversely mounted mi-

crophone. P is the ratio of the averaged pressure on the diaphragm to the

pressure at the diaphragm center point.

except at very high frequencies. This is true because the pathlength difference be-

tween an incident ray which strikes the microphone center and that which strikes the

microphone edge is very small. Thus, it seemed likely that a normally mounted mi-

crophone would, in this sense, act more like a point receiver than would a transverely

mounted microphone.

Further, the diffusive effect of the protective grid would tend to reduce the

loss of sensitivity with increasing frequency due to pressure averaging. Also, with

regard to the insertion loss, it was thought that the pressure averaging effects at the

field and reference microphones would tend to cancel each other out when the ratio

of their discreteFourier transforms was calculated.In sum, the pressure averaging

effectdue to the finitesurface area of a microphone diaphragm should have had

little,ifany, influenceupon the measured insertionloss,unless the frequency was

such that ]_was near zero. Then, errorsassociated with the ratiosofsmall numbers

could have appeared.
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5.3.8 Diffraction at the Edge of the Diaphragm

Another effect which contributed to the anomalous shape of some of the wave-

forms in Fig.(4.1-4.2) was the diffraction of the incident wave at the edge of the

microphone's circular housing. Using the concepts of the Geometrical Theory of

Diffraction, diffracted rays travel from the edge of the microphone housing inward

over the diaphragm. Previous experiments using short pulses and baffled micro-

phones have shown the existence of these waves. 2s Given the dimensions of the

microphones used here (microphone diameter of approximately 6.35 mm), and given

a sound speed of 343 m/s, the diffracted rays from the edge of the circular housing

would arrive at the center of the microphone at a retarded time of approximately

9.3 _s. This retarded arrival time was much smaller than the duration of the total

waveform. The arrival of the diffracted wave upon the active portion of the micro-

phone diaphragm could be delayed by constructing a relatively large baffle around

the microphone. Then, the diffracted wave would arrive after and separate from

the incident wave and, thus, could be gated out, as was done for other spurious

reflections. However, the presence of a large baffle around each microphone would

introduce other difficulties,and although the diffractedwave clearly affected the

recorded shape of the incident waveform, itwas hypothesized that the effectof the

diffractedwave would cancel out when calculatingthe insertionloss.

To test thishypothesis, itwas decided to measure the insertionlosswith nor-

mally and transversely mounted microphones located at typical points of interest.

The diffractioneffectsfor the normal and transverse mountings should have been

quite different.Therefore, ifthe diffractedwave (or the diaphragm averaging effect,

for that matter} influenced the insertionlossto any appreciable degree, then, itwas

reasoned, the measured insertionlossesfor the two microphone mountings should

be different.Measurements were made with normal and transverse microphones,

with and without the protective grids,at the ridge apex, at a point 120 cm behind
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the apex and on the line of sight, and at a point 8 cm above the second point. These

three different field points were typical of the measurements described in chapter

8. Although the calibration factors pertinent to normally mounted microphones

should have been approximately correct for transversely mounted microphones, a

separate calibration of the transverse microphones was made by placing them side

by side equidistant from the source and comparing the RMS voltage values of each

microphone's measured waveform. The measured shapes were practically identical

and the scaling ratio between microphones turned out to be roughly the same as

that deduced for the normal microphones using a BrSel & Kjaer pistonphone. The

results of the measurements were adjusted by this small correction. The measured

insertion losses lay within a band of approximately ±1 dB. As will be shown, this

number is within the experimental error range deduced for the normally mounted

microphones. The result was not surprising since the magnitude of the diffracted

wave should have scaled with the magnitude of the incident wave; and, given that

the microphones were similarly aligned, the scaled effect should have been the same

at both the field and reference microphones, thus, yielding no effect upon the in-

sertion loss. Therefore, it was concluded that the diffracted edge waves played an

insignificant role in the value of the measured insertion loss.

In sum, the results indicated that a normal microphone had the greatest average

sensitivity and that with minor precautions presented only small errors due to

orientation.

_.4 Source Directivity

A set of waveform measurements were made at seven different field points all lo-

cated approximately 1 m from the source. Each field point was separated from its

neighboring points by an angular distance of 6 ° such that the total set of points

spanned an angular range of -12 ° to 24 ° from the horizontal. The results are shown

in Fig.(5.5). Over a broad band of frequencies and over the extent of the angular

range, the ratio of the discrete Fourier transform of the field waveform to that of

the reference waveform deviated from unity by less than 1 dB.
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5.5 Speed of Sound

Free field waveforms were recorded at 10 different field points, all of which were

located approximately 40 cm above the table top and which spanned the length of

the table. The field points were located at 25cm intervals from R _ 175cm to

R _ 400 cm, where R was the distance from source to microphone. A reference

waveform was also recorded for each of the 10 field waveforms. The sound speed

was estimated by plotting the arrival time of each waveform versus the its associated

value of R. The plotted data and a least squares best fit line are shown in Fig. (5.6).

The slope of the best fit line gave a sound speed estimate of 345.6 m/s. This estimate

was very close to the sound speed predicted by

e,,,¢ -- (1% 0.16h)Cdry "- (1 -+-0.16h)(331.3 + 0.61To) -- 346.5 m/s

when To = 22.2 ° C and h _-, 0.03, where h is the fraction of molecules in air that

are water. The given value of h corresponds roughly to a relative humidity of 50%.

The calculation was made assuming P, lr = 1.20kg/m 3 and P, mb= 740mm Hg.

The speed of sound in the plywood table top was estimated by a similar tech-

nique. Two high frequency (1 MHz) transducers were mounted on both sides of

a small patch of plywood identical to that comprising the table top. A suitable

couplant was smeared between each transducer and the plywood in order to ensure

transmission. Two cycles of a 40 kHz sine wave were amplified and used to drive one

of the transducers while the other was used as a receiver. Transmitted signals were

recorded for a single and double thickness of the plywood. The data indicated that

the second thickness of plywood resulted in a delay of roughly 18/zs. The plywood

thickness was 3/4 in (_. 1.gcm). Thus, a sound speed estimate of 1050m/s was

obtained. A substantial amount of unwanted noise, an anomalous signal compo-

nent in the data, and the high attenuation in the plywood made the 18/_s reading

somewhat questionable. Therefore, a second attempt at measuring the sound speed
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in the plywood was made by measuring the transmission time across a 1 in thick

piece of plexiglass and comparing this measurement to one made across the plexi-

glass and plywood in series. This attempt resulted in an estimate of 1300m/s for

the sound speed in the plywood. Both of the sound speed estimates seemed rea-

sonable for the plywood since the speed of sound in many woods is on the order of

3000-4000m/s with the grain, although the speed can be substantially lower across

the grain. That the plywood sound speed should be lower than a typical wood is

supported by the notion that the glued layers comprising the plywood sheet contain

a significant amount of trapped air. Also, to the extent that plywood has a grain

pattern, the measurements were certainly made across the grain. As an example of

the effect of trapped air on the sound speed, consider that the listed sound speed in

cork is 500m/s, which is substantially lower than the sound speed in most woods.

However, all of the above figures are significantly higher than the sound speed in

air. Thus, it seemed reasonable and safe to conclude that the sound speed in the

plywood is greater than the sound speed in air, regardless of inhomogeneities or

anisotropy.

5.6 Free Field Propagation Losses

The same set of 10 field measurements were used to deduce the rate of free field prop-

agation loss. The measured free field insertion loss, for given discrete frequencies,

is shown in Fig.(5.7). The data was normalized with respect to spherical spreading

losses of 6 dB per distance doubling, and with respect to absorption losses in air

as predicted by the ANSI standard. All of the data lie within 2 dB of zero, with

the lower frequency data being within 1 dB of zero and being consistently closer

to zero than the higher frequency data. This is in keeping with the accuracy of

the standard which is expected to decrease with increasing frequency; in fact, the

standard is expected to underpredict the actual losses at high frequencies.
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5.7 Nonlinear Propagation Effects

The short duration, finite amplitude pulse used in these experiments lends itself to

the existence of nonlinear wave steepening. The concern was with the extent of such

effects which occurred between the position of the reference microphone and that

of the field microphone for any particular measurement. To estimate the extent

of these nonlinear effects, consider the propagation of a simple, finite amplitude

wave?' If one assumes that the particle velocity is a single-valued function of

pressure, and that

dp c2
dp °

then the mass and momentum conservation equations yield

ap ap
_-+ (_+,,)_=o

(5.6)

(5.7)

where u is the particle velocity, c is the isentropic speed of sound, and where both

are functions of p. As is well known, this equation indicates that points of a given

pressure move with the same velocity and that points of different pressure move with

different speeds. Further, if (c + u) _ p, then points of greater pressure move faster

than points of lesser pressure, and wave steepening occurs. (5.7) can be reexpressed

as

_- + (Co+ _) = o (5.8)

where X_ = ('Y + 1)/2 is the coefficient of nonlinearity for an ideal gas, and Co is

the ambient sound speed. Now, if p(0, t) = g(t), then the approximate Earnshaw

solution to (5.8) is

(= axg_ (s.o)p(=,t)= a(*) ,X,= t- Fo pc_/

Letting g(@) = Po sin_b, the shock formation distance,_, isdefined as the earliest

value of z for which g(_) isa multi-valued function of t - =�Co. This distance is

pc_ (5.10)
Po_X_
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where _ - 1.2 and p _ 1.2kg/m s in air. Letting Co -- 345.6m/s and p - 120 Pa,

then

_ 5.5m at f- 1OkHz (5.11)

Of course, 2 cc l/f, so the shock formation distance is smaller for higher frequencies.

The value of 5.5 m is on the order of the dimensions of the laboratory; however, it

should also be a very conservative value since it is based upon a waveform which

propagates without dissipation or spreading. The spark waveform is, in fact, spher-

ical not planar. Thus, the peak pressure is attenuated at least by 6 dB per distance

doubling. This fact extends the shock formation distance although it is well known

that spherical spreading cannot on its own prevent the formation of a shock. 25 An

estimate of the shock formation distance of a spherical wave in a lossless medium

can be had from the formula

pc Inro (5.12)
ton,,, = ro exp (dp(ro,t)ldt)m,x.

An estimate of the denominator can be taken from the plot of a typical waveform

at ro = lm. From Fig.(3.3) or (4.1), a reasonable value seemed to be

(dP(_t,t)) 120Pa (5.13)m_x _" 8_---"_

Given this value, roo,et _ I5.7m, nearly three times as far as the plane (simple)

wave value. As mentioned above, the key concern was the extent of nonlinear

effects between distances of 1 m and 4 m. The above analysis indicated that they

were probably small but not necessarily negligible. An attempt was made to observe

nonlinear effects by comparing the discrete Fourier transforms of free field waveforms

captured at 1, 2, 3, and 4 m. After corrections were made for spherical spreading and

absorption losses, no clear indication of an energy redistribution from low to high

frequencies was apparent. The data shown in Fig.(5.7) was some of the data used

to make the observation. In addition, the shapes of the waveforms were observed

for signs of wave steeepening. Again, no significant changes of shape were apparent.

For these reasons, it was concluded that nonlinear effects play a negligible role in

the waveform propagation induced by the spark source. Consequently, the aznbient

speed of sound was denoted by c throughout this thesis.



86

CHAPTER VI

SPECIFIC ACOUSTIC IMPEDANCE

OF THE

CURVED SURFACE

Recall from chapter 3 that the Fock-van-der-Pol-Bremrner function, G, was a func-

tion of the scaled parabolic coordinates, (_,_/), and of the scaled admittance pa-

rameter, q, which characterized the boundary condition at the surface. A value

of the parameter q was required before G could be computed and compared with

experimental results. In this chapter, a method used to evaluate q for the two lab-

oratory scale surfaces (chapter 4) is described. As will be shown in this and the

following two chapters, the results of this method yielded excellent comparisons to

experimental data. The results also tend to indicate that the method should work

reasonably well for a wide range of real surface types.

The task of evaluating q is equivalent to that of evaluating the specific acoustic

impedance of each surface since

(7)q=i -- _-

where R is the radius of the curved surface, k and pc are the wavenumber and char-

acteristic impedance of air, respectively, and Z, is the specific acoustic impedance

of the curved surface. The specific acoustic impedance is defined by

onSo
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where So is the nominal location of an infinitesimally small area on the surface.

A direct measurement of the acoustic impedance of a surface is not a simple task.

The difficulty becomes apparent when one considers that, to obtain Zo directly, the

pressure and normal velocity of the fluid at the surface would need to be measured

simultaneously. To complicate matters, Z, is not an intrinsic property of the surface

but depends upon the incident wave as well. In particular, Z, = Zo (81, w) where w

is the frequency of the incident wave and 81 is the angle between the propagation

direction and the inward normal of the surface. To simplify matters, a number of

assumptions concerning the surface and the incident wave were made so that Zo

could be deduced from measurements of"the pressure, _, at points off of the surface.'F

6.1 Analytic Methods of Evaluating Surface Impedance, Z2

A reasonable and simple firstapproach was to assume the case of a plane wave

incident upon locallyreacting surface. A locallyreacting surface isone on which the

motion of any particular portion of the surface isindependent of the motion of the

restof the surface. As shown below, an implication ofthe localreaction assumption

is that the surface impedance is independent of the angle of incidence, 61. These

assumptions resultin a well known and simple expression for the pressure at any

point in the field.However, there are limitationsassociated with these assumptions,

and in certaincases,particularlywhen 01 _,7r/2,itisnecessary instead to consider

the reflectionof a sphericalwave from a plane boundary.

Consider two semi-inflnitehomogeneous halfspaces separated by a plane im-

pedance boundary. Let a plane wave of constant angular frequency cobe located in

one of the half spaces and be incident upon the boundary at angle 61. (The half

t No attempt was made to use an impedance tube to make the required measurement

because kR was made large (intentionally). At high frequencies, Itandard impedance

tube techniques are inapplicable.
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space containing the incident wave is referred to as the upper half space and its

properties are denoted by a subscripted numeral 1. Its image space is referred to

as the lower half space and its properties are denoted by a subscripted numeral 2.)

Then, the acoustic pressure at the receiver can be written as

p = (6.3)

with

where P+ is the magnitude of the incident plane wave, kl is the wavenumber vector,

el and eR are position vectors associated with the incident and reflected waves, and

_p (81, w) is the plane wave pressure-amplitude reflection coefficient. This reflection

coefficient can be expressed as

Z2 cos 01 - p_c_ (6.5)
)_P = Z2 cos 01 + pl c_

where Z2 is the specific acoustic impedance of the lower half space, and p_ cl is the

characteristic impedance of the upper half space. If one lets Z2 = p2 c2 / cos 02, then

_p can be reexpressed as

R.p = P2c2 cos 81 -- Pl cl cos 82 (6.6)
p_ c2 cos 01 + p_ c_ cos 02

A special version of (6.6) is found in cases where kl 2 _ k_ 2 . In such cases, Snell's

(Snel's)Law

kl sin 01 = k2 sin 0= (s.v)

indicates that 02 is close to zero, independent of the value of 01. Then, (6.6) reduces

to

_,,= p2c2cosO_- plc_ (6.8)
p_ c2 cos O_ -k p_ c_



89

Thus, the reflection coemcient is still a function of 0_, but Z2 _ P2 c_ is a constant

impedance independent of 01. In such cases, the boundary is referred to as locally

reacting; that is, when the propagation in the lower half space is negligible due to

a slow sound speed, cl > c2. Another case when the boundary can be considered

as locally reacting is when the attenuation in the lower half space is large enough

that the transmitted wave can be neglected.

In principle, one could measure the phase and amplitude of the pressure at

any point above the surface, and use (6.4) to deduce Rp, and subsequently the

surface impedance, Z2. However, in practice, neither a true incident plane wave

nor true plane wave reflection at the boundary is attainable. The second of these is

particularly true at large angles of incidence. In fact, a plane wave cannot propagate

parallel to a flat surface of finite impedance. 26

One may account for the lack of a true incident plane wave by writing the

pressure as

which is valid for a point source located such that RI and R_ are the distance

from the source to the receiver and the distance from a mirror image source to

the receiver, respectively. As kR gets large, this expression approaches (6.4) (i.e.

the incident spherical wave becomes approximately planar when the point source

is moved fax away). Thus, in practice, a reasonable approximation for a plane

incident wave can be had. Still assuming plane wave reflection at a locally reacting

boundary, then the impedance can be deduced from (6.9) and (6.5). At frequencies

such that the errors in the measurement of source and receiver positions axe small

compared to a wavelength, and at moderate angles of incidence, this method should

yield reasonable results. However, if one assumes that Z2 is finite, then as the angle

of incidence 0 --* _r/2, (6.5) indicates that _p --, -1, and thus, from (6.9), _ ---, 0

at the boundary. This result is referred to as the grazing incidence paradox since
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it predicts that no energy is absorbed by the surface regardless of the value of

the surface impedance, although it seems clear that some of the energy of a wave

propagating parallel to a plane surface would go into causing motion of the "surface

in a direction perpendicular to the assumed direction of the wave. "2_ t

This contradiction can be avoided by considering spherical wave reflection from

the plane boundary. Work in this regard goes at least as far back as Sommerfeld

[1909,1926] who worked on problems of long range radio wave propagation. Other

contributions were made by van der Pol [1935] and Norton [1936], who first outlined

the form of the solution used currently. As in the case of a rigid boundary, they

interpreted the solution in terms of a source point and its image below the plane

boundary. However, in their interpretation, this image point lies at the center of

a roughly elliptical region from which secondary waves are emitted. _8 The size

of this region is an inverse function of the magnitude of the imaginary part of the

wave number in the medium below the boundary. When this region is small, due to

a sufficiently large attenuation in the lower medium, the combination of the image

source and the secondary waves was referred to by van der Pol as a diffuse image

source. Clearly, one characteristic of a diffuse image source is that its behavior

approaches that of a classic image source as the boundary impedance approaches

that of a perfectly rigid boundary. Rudnick [1947] followed the work of these men

to present the analogous solution for acoustic propagation over an impedance plane.

A complete and up-to-date treatment of the derivation and solution was pre-

sented by Brekhovskikh [1980]. The derivation made use of the fact that a spherical

wave can be expressed as an integral of homogeneous and inhomogeneous plane

_" Ingard noted that the grazing incidence paradox could be overcome by simply setting

-- BoCOSa0 "-- pzcl/Z2. With such an expression for the impedance, and when

0 _ r/2, the gra--ing incidence paradox is found when n _- 0. But when n -- I, the

•.flectionco. ci.nt isCBo--I)I +1), andthesurfacepressureisnon-.to Infaot,
when n>l, the reflection coe/_cient is I, and the surface pressure is double the incident.

See U. Ingard, Ph.D. dissertation, M.I.T., 1950.
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waves. Subsequently, the method of steepest descent was used to derive an asymp-

totic solution for large kR. The details of this procedure axe rather involved; there-

fore, the end result is simply stated here as

_iksRs _iksR2

s _,R_ + k,_ [(1-_)F(_)+_] (6.10)

where

F(w)= 1+ivY,-" e_fc(-iv_ (6.11)

• 2k:P_ Z_ (l_k_sin20) (6.12)w='(i: _)_ z_ k-_

and where erfc(z) is the complex complementary error function and O is the angle

of incidence• This result is sometimes referred to as the Weft-van der Pol equation.

The ray acoustic solution has reappeared on the right hand side of (6•12), along

with the plane wave reflection coefficient, Rp. The new term, F, was referred to

by Rudnick as the boundary loss factor while others referred to it as the ground

wave function, w has been commonly referred to as the numerical distance.t The

function F is such that as w --* 0, F --* 1 and as w ---* oo, F _ 0. Examination of

(6.12) reveals that these two cases represent the case of a rigid surface and the case

of plane wave reflection, respectively. This behavior is consistent with the definition

of w in that

woc k,R_ Z_ (6.13)
(1- _)_ z_

Thus, it is clear that i) when the source is very far from the receiver or the source

is very fax above the boundary, w _ oo and the plane wave result is found, and ii)

when Z2 _ oo, w _ 0 and the rigid surface result is found. (One should be careful

to note that when Z2 ---, oo, _p _ 1 and w is indeterminate. However, in this

"_ The numerical distance is related to the distance Cin the complex plane) between poles

of the plane wave reflection coetticient and the saddle point found as part of the method

of steepest descent used in the solution.
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case (6.10)gives the correct rigidsurface resultdirectlyafter plugging in )_p = 1

and knowing that F(w) isbounded.) Finally,the aforementioned grazing incidence

paradox, found in cases of plane wave reflection,isovercome since when 0 --_Ir/2

and )_p --+ -1,

_ikIRL

@1 -'_ 2F(w) Rz (6.14)

In this form, it is clear that F is an attenuation function since for F = 1, (6.14)

yields the rigid boundary solution. Interestingly, for certain values of the numerical

distance, particularly when arg(w) -_ _r/2, IFI can be greater than unity. Then,

surface pressures greater than those at a rigid surface are predicted.

Similar work by Wenzel showed that for certain types of surface impedances,

the solution for the total field contains a surface wave term. A surface wave is

characterized by a magnitude which decreases exponentially with height above the

impedance plane and by a propagation speed parallel to the boundary which is less

than the free space propagation speed. Using the notation of Wenzel, this surface

wave was expressed as

--"hH(ol' [(k_ +',/2)I/2r] where -/- iklelp, (6.15)
"7

where h is the distance between the source and its image, and r is the horizontal

distance between the source and receiver. It is worth noting that the asymptotic

behavior of the Hankel function is

( 2 )_12e"r-'l" (6.16)

In this form, the magnitude of the surface wave is seen to falloff exponentially

with distance along the surface. However, ifthe imaginary part of % which is

proportional to the real part of Z_, is small enough, then the magnitude of the

surface wave fallsoff"as r-i/2. Since the other terms in the total solution falloff-

as r-i the magnitude of the surface wave may dominate the solution. In such
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cases, a so-called negative excess attenuation can occur near the surface. (Excess

attenuation is defined as the attenuation beyond that due to spreading or pressure

doubling at a surface.) Another aspect of the solution, which is apparent from

(6.16), is that the phase speed of the surface wave is slower than that in free space

when the imaginary part of Z2 is positive.

A surface wave term is not always present in the solution. Rather, its existence

is determined by the following relationship between Z and 0, where the subscripts

have been omitted, and Z and 0 are understood to be Z2 and 01.

-- .< 0 (6.17)

where 0 is the angle of incidence and _ --- pl cl/Z. 2_ When the surface wave does

exist its contribution is typically weak enough such that a positive excess attenuation

results in the field over the impedance plane. However, as discussed above, when

the real part of the impedance is small and the imaginary part is relatively large,

the surface wave contribution can be significant. It is the surface wave component

which is responsible for those instances when JFJ > 1.

6.2 Proposed Experimental Method

As stated before, the interest was to obtain an estimate of the surface impedance at

grazing angles of incidence so as to evaluate the scaled admittance parameter, q. It

was assumed that the impedance at a point on a curved surface was equivalent to

that of a point on a fiat surface, given that the surface material properties and the

angles of incidence were the same. This assumption seemed reasonable from a ray

acoustics point of view and, since high frequency propagation was assumed, it was

adopted. Then, using the above formulae, the impedance of a plane surface could

be calculated or inferred from measurements of the pressure above that surface. A

method for doing this was outlined by Chessel and successfully applied by Embleton
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et a/.. s° The method consisted of comparing measured sound pressure levels with

predicted sound pressure levels for the field of a point source above an impedance

plane. Of course, to predict sound pressure levels using the above formulae, an

estimate of the knpedance for each given angle of incidence was needed. However,

it was assumed a priori that the surface was locally reacting, with the intent of

determining a posterior/the validity of the assumption from the results of its ap-

plication. Thus, it was decided to use a semi-empirical, single parameter model

put forth by Delany and Bazley for fibrous absorbent materials, s_ The model

estimates the impedance independent of the angle of incidence, and so it inherently

assumes local reaction at the surface whenever it is used for cases of oblique angles

of incidence. The resulting impedance estimate was used in (6.10) to predict the

SPL over a wide range of frequencies, and the resulting curve was compared to that

found from experimental measurements. When a curve of the predicted SPL, for

some estimated impedance, was found which matched the experimental data, then

the actual impedance was assumed to be equivalent to the estimate used in the

prediction.

The single parameter model was obtained from an analysis of measured impe-

dance data for a wide range of fibrous absorbent materials. All of the measured

data was acquired through the use of an impedance tube and, thus, the data rep-

resented normal incidence surface impedances. The model related the real and

imaginary parts of the impedance, 22, to the ratio of frequency divided by specific

flow resistance per unit thickness (henceforth referred to as the flow resistance).

Relationships to the same ratio were also found for the complex propagation co-

ei_icient in the absorbing material. Expressed as power laws, these relationships
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were

Re = = i+
PzCz

I.m = o.o88(p,I/,,)- °."

= k"-_"- 1 + O.O96(pzf/o) -°''°

I'm {k_'l } ="_1_2=0"192(pzf/a)-°'5_

(5.18a)

(5.ZSb)

(5.18d)

where f was the frequency, Pz cz was the characteristic impedance of air, Z2 was the

specific acoustic impedance of the reflecting surface, k2 was the complex wavenum-

bet in the absorbent material or surface, and a was the flow resistance parameter in

kg/(m 3.s). The use of (p_ f/a) as the scaling parameter was suggested in the the-

ory of sound propagation in a porous medium as presented by Zwikker and Kosten

[1949].

Attenborough pointed out that a price paid for the singleparameter model was

that it fixed the functional dependence of the impedance to frequency as well as

the relative magnitude of the real and imaginary parts of the impedance. These

constraints could become problematic for uses of the model outside the range of

f and a associated with the experimental data upon which the model was based.

Delany and Bazley stated that the model _may be used with confidence" within

the interpolating range 12 _< pzf/a < 1200 (where pz = 1.2kg/m 3) but caution

against its use otherwise. In particular, they warned against its use for low values

of Pl f/o; that is, for acoustically hard surfaces. Indeed, Attenborough reported

some difficulty when using this model to predict highway noise propagating from a

line of traffic over a barren or lightly vegetated ground. He also showed that a five

parameter model involving flow resistance, porosity, tortuosity, steady flow shape

factor, and dynamic shape factor yielded "superior" results compared to those of

the single parameter model when hard but porous surfaces such as sand or soil
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were considered. In the five parameter model, Attenborough showed, for large flow

resistivities and low frequencies, that Z2 and k2 were proportional to

(0.1s)

where fl is the porosity, and that the real and imaginary parts of Z2 were equal.t

This result showed that i) the scaling exponent was no longer the same as that

in the single parameter model, and ii) it was likely that what Delany and Bazley

called the flow resistance, a, was, in fact, better termed the effective flow resistance

since it probably included the influence of other factors such as the porosity, fl.

Attenborough also stated that "for high flow resisfivities the empirical formulae give

severe overestimates of attenuation constants." Furthermore, at high frequencies

Z2 r k2
Pl cl -----1_ ' kl - _" (6.19)

where r was the tortuosity. However, in another study by Chessel, the single pa-

rameter model found good use outside of its stated range of validity, and, due to its

simplicity, was worth using as an approximate relation between a characteristic sur-

face property, o, and the surface impedance, Z2. The five parameter model, while

widely applicable and promising in accuracy, required the measurement or assess-

ment of both the porosity and flow resistivity, and the acceptance of an approximate

relationship between the dynamic and static shape factors.

t Konstantinov found the same functional dependence between Z_, and f when considerini[

the effect of thermal and viscous boundary layers on reflection from a hard boundary.
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6.3 Actual Experimental Procedures and Results

Before the experimental method outlined above was used, an attempt was made to

evaluate the impedance, Z2, by assuming specular reflection and directly applying

(6.8). The experimental setup was such that the spark source and receiver were

located high above the table surface (Fig.6.1), such that the direct and reflected

pulses arrived separately at the receiver. The angle of incidence was simply stated

as

tan - O = _,

An advantage of this approach was that it required only one microphone, and so no

account was needed of frequency responses amongst different microphones. In order

to mitigate the effects of the directional response of the microphone, the microphone

was oriented such that the direct and reflected rays impinged upon the diaphragm

face at equal angles of incidence; that is, such that 2¢ -- r/2 + (a - 0), where

h. - (6.21)
tan a = L

Another advantage of the single microphone capability was that the entire 500 kHz

sampling rate of the A/D converter was available to collect data. This rate was

sufficient to assure accurate measurement of the arrival time of the pulses to less

than 5 % of the period, T, at 20 kItz. An obvious disadvantage of this method was

that in order to keep the arrivals of the direct and reflected pulses distinct at large

angles of incidence, the distance L had to be large enough so that AR/c > T. This

requirement tended to decrease the signal-to-noise ratio since, in practice, the pulses

were spreading spherically. On the other hand, the maximum size of L was dictated

by the dimensions of the laboratory. This limitation on L, along with the need for

separate arrivals of the pulses, prohibited measurements at angles of incidence less

than 10 ° .
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Source

///

Figure 6.1 Sketch illustrating the method used to acquire initial estimates

of the surface impedance. Depicted are the direct (R1) and reflected

(P_) ray paths between a point source and a listener. The reflection

occurs according to the law of mirrors but with the reflected ray ex-

periencing a change of magnitude and phase during the reflection. In

the actual experiments, a spark source produced a short transient. Be-

cause (P_ - R1 ) was sufficiently great, the two arrivals were separated

in time. With appropriate corrections for spherical spreading and ab-

sorption, the incident and reflected waveforms at the point of reflection

could be deduced. Then, the ratio of their discrete Fourier transforms

yielded the reflection coefficient, and with additional calculation, the

surface impedar_ce.
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The incident and reflected waveforms were corrected for spherical spreading

and absorption, and the reflection coefficient was calculated as the ratio of the

magnitudes of the discrete Fourier transforms of these waveforms. Results obtained

at angles of incidence of 10"-60" for the bare plywood surface indicated that the real

part of the plywood impedance was relatively small and positive but independent

of frequency. However, the imaginary part of the plywood impedance decreased

roughly as 1/f but was significantly larger than the real part over the range of

frequencies 5-25kHz. Near 25-30kHz, the imaginary part tended to go through

an inflection and change sign. Thereafter, its magnitude tended to grow at least

quadratically. Thus, the magnitude of the impedance tended to go through a mini-

mum near 25 kHz. Finally, the magnitude of the imaginary part tended to increase

as the angle of incidence increased. Thus, these results indicated that the surface

was not locally reacting.

A troubling aspect of this data was that a relatively large scatter was found

in the measured reflection coefficient phase data while the magnitude data was

repeatable. At high frequencies, this result was not surprising since the error in

the measured positions of source and receiver scaled inversely with the wavelength.

This error was believed to be the source of most of the trouble with this technique,

certainly at moderate angles of incidence. As discussed above, for large angles of

incidence, the analytical model itself was questionable.

Measurements such as those described above were made over the carpet-on-

plywood surface as well. The results at moderate angles of incidence, 10"-60",

indicated that the real and imaginary parts of the impedance were approximately

the same with both falling off roughly as 1/f. Again, a large scatter was found

in the phase data. Also, the finite thickness of the carpet and the presence of the

hemp and glue carpet backing made an estimation of the effective point of reflection

difficult.
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When it was not possible to acquire distinct arrivals of the direct and reflected

pulses, the impedance was calculated using a method relying upon the standing

wave ratio (SWR). In this method, the direct and reflected pulses were transformed

together so as to produce an oscillating interference pattern. The magnitude and

phase of the surface impedance can be deduced from the magnitudes and locations

of adjacent nodes and antinodes, respectively, s2 However, this method also relied

upon the accurate measurement of the source and receiver positions, and so difficulty

was encountered in obtaining repeatable estimates of both the magnitude and phase.

The method finally settled upon was that developed by Chessel, used by Em-

bleton, eta/., and described in the previous section. As mentioned above, Ches-

sel's method considered the reflection of a spherical wave from a plane impedance

boundary, s3 This consideration waz important when the angle of incidence was

large, as was true for the model experiments conducted in this study. Also, use of

the semi-empirical, single parameter model of Delany and Bazley allowed for the

calculation of the impedance, Z2, from the magnitude of the pressure at a point

above an impedance plane; that is, no phase information was required. Thus, the

difficulty of accurately and precisely measuring the source and receiver positions

was relieved.

Typical results obtained for the carpet-on-plywood surface at a number of

different large angles of incidence are shown in Figs.(6.2-6.3). The data shown in

Fig.(5.2) is that for inclination angles of I.I ° , 5.0 ° , 9.8 ° , and 15.3 ° from the horizon.

Fig.(5.3) shows data obtained at an angle of incidence of 2.2 ° from the horizon.

Other inclination angles examined were 1.3 °, 1.7 ° , 3.6 °, and 7.0 ° . The height

of the receiver was 0.3cm in all cases. The horizontal distance ranged between

60cm and 120cm, while the source height was adjusted to provide the desired

angle of inclination. The solid line represents the results predicted by (6.9) when

the impedance is estimated by the single parameter model with an effective flow

resistance of a = 1600 × 10 s kg/(m 3 .s).
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Figure 6.2 Typical resultsobtained for the determination of the effective

flow resistance,a, of the carpet-on-plywood surface. Shown are the

measured SPL (0) and the predicted SPL (--)versus frequency curves

for sound propagating over the flattable top covered with a thin com-

mercial carpet. In thiscontext, the SPL refersto the sound level,in dB,

at the point of reflectionrelativeto that of the free fieldextrapolated

to that point. The predicted SPL curves were computed using a value

for the effectiveflow resistanceof a = 1.6 x 106 kg/(m s.s).The listener

height was 0.3cm while the horizontaldistance between the listenerand

source was either100 or 120 cm. The source heights were such that the

shown angles of incidence were produced.
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Figure 6.3 Typical result obtained for the determination of a variable ef-

fective flow resistance, a, for the carpet-on-plywood surface. The curves

and data represent SPL quantities similar to those shown in Fig.(5.2).

The solid curve represents the predicted SPL curve computed using a

value of o = 1.6 × 106 kg/(mS.s) for the effective flow resistance. The

dashed curve represents the predicted SPL computed using an effective

flow resistance which varied linearly from cr -- 1.6 × 106 kg/(m s .s) at fre-

quencies below f = 14.5 kHz to _ = 0.8 × 106 kg/(m s-s) at frequencies

above f = 17 kHz. The listener height was 0.3 cm, the source height was

2.0 cm, and the horizontal distance between the listener and source was

60cm.
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The experimental data fit the prediction very well up to approximately 14 kHz,

but it overestimated the experimental data for frequencies greater than 14 kHz.

As shown in Fig.(5.3), a improved fit was found when a was varied linearly from

1600× l0 s to 800× l0 s kg/m3s over the frequency range 14 < f _< 17.5kHz, and then

maintained at a -- 800 x l0 s kg/mSs past 17.5 kHz. It was expected that the best fit

value of a would change with frequency because the relative importance of porosity

and other factors, which do not scale the same as flow resistivity, was expected to

change with frequency. In fact, as noted previously, porosity and tortuosity should

have become increasingly important at higher frequencies. Furthermore, an effective

flow resistance parameter might be expected to decrease with increased frequency

simply on grounds that as frequency increased, the relevant length scales decreased,

and the effective size of a pore increased.

Somewhat surprising was that a good match between theory and experiment

occurred at all. Embleton et al. pointed out that the formulae of Delany and Bazley

are invalid for surfaces consisting of a thin porous layer on top of a hard backing.

In fact, Delany and Bazley advised adjusting the impedance for such cases by the

formula

2_ = Z_ coth "yt (6.22)

where Z2 = R.2 + iX2, "[ = _ - ia2 is the propagation constant with 82 and a2

as defined in (6.17), and £ is the effective thickness of the layer. As mentioned

above, and in chapter 4, the carpet-on-plywood surface consisted of a 1/4 in thick

commercial carpet laid atop a plywood table. The carpet fabric was not tightly

woven. However, the carpet fabric was attached to a backing of glue interspersed

amongst a woven grid of thin hemp cord. The glue layer was riddled with holes

on the order of 1 mm in size. This glue layer may have acted as a soft absorber or

scatterer atop the relatively hard plywood surface. Thus, it was unclear whether
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the above adjustment for a rigid backing was appropriate for the carpet-on-plywood

surface.

Many trial calculations using the correction (6.22) were made. The possible

values of l were alternately chosen to be the total thickness of the carpet, one-half

the total thickness of the carpet, and the thickness of the glue-hemp backing. The

reasoning was that, if the carpet behaved as a single layer at all, then the effective

layer thickness might be the total thickness, or the mean thickness, or perhaps, if

the carpet fabric was assumed to play no role in reflection or absorption, then the

thickness of the glue-hemp backing. The various numerical results generated using

(6.22) provided no better fit with experiment than that generated without (6.22).

In fact, in most cases the fit was worse. It was found that when l was set to the total

thickness of the carpet, 6ram, that the signal attenuation tended to decrease with

increased frequency when the frequency was greater than approximately 15kHz.

This decrease in attenuation was not found in the experimental data shown. Similar

behavior was found for l -- 3 mm. When l was set to the thickness of the hemp-glue

thickness, 1 ram, a negative excess attenuation was predicted at frequencies below

5 kHz; that is, the predicted pressure was greater than the 6 dB pressure doubling

predicted for a rigid surface. This result was reasonable since at low frequencies,

kl was quite small and the surface was effectively very hard. Thus, no apparent

improvement in the fit with experiment was found from the use of the thin layer

correction, and since an excellent fit was found without the correction, 2_, not Z_,

was taken as the surface impedance for the carpet-on-plywood surface.

In the case of the bare plywood surface, initial predictions, using the single

parameter model with a -- 80 x 106 kg/(m s.s) to estimate the impedance, did not

fit the experimental data particularly well, although it was the best fit obtainable

(Fig. 6.4-6.6). Although the prediction fit the experimental data at certain points

in the frequency range, the predicted shape of the curve certainly did not follow
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Figure 6.4 Result obtained for the determination of an effective flow re-

sistance, a, for the plywood surface. The curves and data represent

SPL quantities similar to those shown in Fig.(5.2-5.3). The solid curve

represents the predicted SPL curve computed ushng the two parame-

ter impedance model. In that model, an effective flow resistance of

_, = 120 × 106 kg/(m 3 -s) was used along with an effective surface layer

thickness of d, -- 7.5 x i0-s m. The dashed curve represents the pre-

dicted $PL computed using the single parameter model with an effective

flow resistance of a - 80 x 106 kg/(m 3 -s). The listener height was 0.3 cm,

the source height was 2.0 cm, and the horizontal distance between the

listener and source was 100 cm.
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Figure 6.5 Result obtained for the determination of an effective flow re-

sistance, a, for the plywood surface. The curves and data represent

SPL quantities similar to those shown in Fig.(5.2-5.3). The solid curve

represents the predicted SPL curve computed using the two parame-

ter impedance model. In that model, an effective flow resistance of

a, = 120 × 10 e kg/(m 3 .s) was used along with an effective surface layer

thickness of de = 7.5 × 10-5 m. The dashed curve represents the pre-

dicted SPL computed using the single parameter model with an effective

flow resistance of a = 80 × 106 kg/(m 3 -s). The listener height was 0.3 cm,

the source height was 2.0 cm, and the horizontal distance between the

listener and source was 80 cm.



107

m
V

J
CL

W
>_

5
w

lO

8

6

4

2

ONE PARAMETER MODEL

TWO PARAMETER MODEL

0 = 84.7"

I I 1 I I I I I

0 10 20 30 40

FREQUENCY (kHz)

Figure e.B Result obtained for the determination of an effective flow re-

sistance, (r, for the plywood surface. The curves and data represent

SPL quantities similar to those shown in Fig.(5.2-5.3). The solid curve

represents the predicted SPL curve computed using the two parame-

ter impedance model. In that model, an effective flow resistance of

ere = 120 x 106 kg/(m s -s) was used along with an effective surface layer

thickness of d, = 7.5 × 10-5 m. The dashed curve represents the pre-

dicted SPL computed using the single parameter model with an effective

flow resistance of e = 80 x 106 kg/(m 3-s). The listener height was 0.3 cm,

the source height was 9.0 cm, and the horizontal distance between the

listener and source was 100 cm.
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that of the data. In two of the figures_ a very shallow dip in the data below 7 kHz

was followed by a small rise until approximately 16 kHz. Past that frequency, the

data tended to fall off more rapidly until roughly 35 kHz at which point another

rise and fall began. (Due to the limited spectrum of the free field incident wave,

the data past 35 kHz was not to be trusted.) A major difficulty with this data was

in how to interpret the small rise in SPL between T and 16kHz. In this range,

the $PL of the free field incident wave was large enough so that numerical error

associated with division by small numbers was negligible. Also, it did not seem to

be an interference effect because the pathlength difference between the direct and

reflected ray paths was on the order of 0.5_0 of a wavelength at these frequencies.

An interesting fact about the small rise is that it began at the 6 dB line. Therefore,

the rise appeared to be a negative excess attenuation. As mentioned earlier, this

effect can occur in special cases when the surface wave component of the solution

dominates at a point in the field. A surface wave was shown to exist whenever (6.16)

was satisfied. It can be shown for frequencies around 10-15 kHz, that the impedance

estimate obtained from the single parameter model, when cr - 80 x 106 kg/(m3.s),

satisfied the requirement for a surface wave . However, for such an estimate, the

magnitude of the surface wave can be shown to have been small. This result was

not surprising because the impedance model of Delany and Bazley fixed the ratio

of the real and imaginary parts of Z2 such that they were of comparable value even

though X2 was usually slightly greater than J_ as required by the surface wave

existence condition (6.16). This fact was important because the magnitude of the

surface wave was shown to fall off exponentially with JT_, the resistive component

of impedance. Thus, for a surface of large Z_, the single parameter model automat-

ically predicted comparably large resistive and reactive components. Therefore, the

model could not have simultaneously predicted a large impedance and still allowed

for a significant surface wave contribution. In the case of a plywood table top, a
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fairly large value of Z2 was expected, and, as shown in the figure, the results based

upon the single parameter model did not predict the negative excess attenuation

found in the measured data.

For hard surfaces, such as the plywood surface, a suggested alternative to

the single parameter model was found from Attenborough's five parameter model,

mentioned briefly above. His idea was to model a hard surface as a thin layer of

thickness, d, atop a rigid backing. Then for sufficiently small kd, the impedance Z2

was shown to modelled by

Pl cl
-- 0.82 × 10 -3 _, de + i38.99 (6.23)

fd,

where de is an effective thickness, in meters, and _ is an effective flow resistance,

in kg/(m 3 .s). s_ In this model, the real part can be small even when the reactive

part is large. Such a formulation w_s suggested in the work of Donato, who showed

for a rigidly backed thin surface of constant porosity that at low frequencies the

impedance was nearly purely hnaginary and scaled as 1If. Donato also showed

that this result was identical to that found for a surface with a porosity which

decreased rapidly with depth into the surface (although Attenborough disputed

Donato's conclusion)? 5 This two parameter model was in accord with physical

intuition in a number of regards. First, for large de, the model gives a real part of

impedance which is much larger than the imaginary part. This result agrees with

the notion that deep pores admit more flow and, thus, higher losses due to flow

resistance, than do shallow pores which tend to act more like capacitors which do

not attenuate the field. Second, at higher frequencies, the model gives a real part

which is again much larger than the imaginary part. This result reflected the notion

that, at higher frequencies, the width and depth of the pores was effectively larger,

and the pores again admit more flow. Thus, the effect at higher frequencies was

to make the surface seem softer and more like an absorber. An examination of the
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plywood table top indicated that the two parameter model might give a reasonable

estimation of the plywood impedance.

The method for deducing the parameters was similar to that used before except

that two parameters, a, and d,, had to be recursively estimated and plugged into

the formula. Since the single parameter model yielded a _ 80 x los (MKS), a_ was

initially held to be on the order of a. As before, the two parameters were varied until

the predicted SPL approximated that of the experimental SPL. Figs.(5.4-5.6) show

the predicted SPL based upon the single parameter and the two parameter models,

respectively. Best fit values of a_ = 120 x l0 s kg/(mS.s), and de = 7.5 x 10-6m

were found for the three sets of experimental data. Note that the measured negative

excess attenuation was better approximated by the theory when the two parameter

model was used. The best fit values were chosen based upon the fits with all three

data sets. Even though the results do not support the local reaction assumption,

they do indicate that the two parameter model was a much better approximation

for the plywood surface because it predicted the qualitative behavior of the data

even though it had difficulty matching the data itself over a range of incident angles.

In sum, the impedance, Z2, as estimated by the two parameter model, was accepted

as the impedance of the plywood surface.

6.4 Summary

Apparently good estimates of the surface impedance at grazing angles of incidence

were found by applying the theory for a point source radiating near an impedance

plane. The single parameter model of Delany and Bazley provided a working model

for the impedance of the carpet-on-plywood surface. The single parameter known as

the effective flow resistance was estimated to be 800× l0 s and 1600× l0 s kg/(m s -s) at

high and low frequencies, repectively, for the carpet-on-plywood surface. However,

the theory encountered difficulty in predicting the field near the plywood surface
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when the singleparameter model was used. Instead, a two parameter model sug-

gested by Attenborough and Donato for thin layersatop a rigid back was used to

estimate the impedance. The two parameters were an effectivelayer thickness, de,

and, again, an effectiveflow resistance,a_. Predictions of the field,obtained using

the two parameter model with _, - 120 x 106 kg/(m s.s)and d, - 7.5 x 10-6 m,

improved upon the predictionsfound using the singleparameter model. Specifically,

the negative excess attenuation measured near the plywood surface was predicted

when the two parameter model was used. Such a prediction was practicallyprohib-

itedby the singleparameter model.
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CHAPTER VII

MEASUREMENT

OF THE

ACOUSTIC FIELD ON THE CURVED SURFACE

This chapter describes the results of experiments conducted to measure the inser-

tion loss on the curved surface. Data was obtained at a series of points spanning

the curved surface from front to back along the ridge centerline. From this data,

experimental values of insertion loss were deduced at each point. The experimental

procedure was that as described in chapter 4. Predictions of the insertion loss at

these same points were obtained by computing (3.24). The frequency content of

the incident waveforms was such that 200 _ kR _ 1800. Discrepancies between the

experimental data and the predicted data were often less than 2 dB in those regions

where the signal-to-noise ratio was sufficiently large. The following is devoted to

detailing important aspects of the predicted and measured fields on the surface, and

the differences between them.
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T.1 Equations for the Insertion Loss on the Surface

An implication of the Kirchhofl'-Helmholtz Integral theorem and of the Geometrical

Theory of Diffraction is that if the incident field and the field on the surface of an

isolated scatterer are known, then the solution for the field surrounding the scatterer

is uniquely determined. Therefore, the determination of the field (or its associated

insertion loss) at the surface was of fundamental interest and was a natural starting

point for an investigation of the surrounding field.

As presented in chapter 3, the magnitude of the pressure, [p[, at a point in the

field is proportional to the magnitude of the Fock-van-der-Pol-Bremmer function

1 [_{_-7)- C_)- q_C_)wl(_- 7)]e'°'d_aC_,_,q) = -_ _0;(_) _ q_ (_) (3.21)

which is reexpressed here for convenience. A form of G valid on the surface

and near the apex was shown to be

1_o_°a(_,O,q) =

I/o°"+-_
eie_

d8
_(_) -qw_(_)

d_

(3.25)

Further examination of (3.21) revealed that another form of G valid on the

surface is

V_lI_ w'_(s) e"¢G(_,O,q) = _ ds (7.1)

Thus, for the case of a completely rigid surface, q = 0, G can be expressed as

,,.,a(_,0,0) = _ _) d_ (_.2)

In this form, Ic(_,0,0)l c_n Se shown to approach 2 (or 6dB) for _ large and

negative. Of particular interest was IG(0,0,0)[ = 1.399 (or 2.92dB) which gives
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the value of the field at the apex of a rigid curved surface. As seen from (7.2),

this value is independent of frequency. (In general, IG] is a function of frequency

through the parameters q, _, and rl. However, at the apex of a rigid surface all

three parameters are identically zero.) Interestingly, the value at the apex is not

the -6 dB predicted for a plane wave incident on a fiat rigid boundary, nor is it 0 dB

(i.e. equal to the magnitude of the incident field). In Electromagnetic Diffraction

and Propagation Problems, Fock lists the values of [G(_,0,0)I for -4.5 _< _ _< 4.5.

Values for G(_,0, q) were computed using Simpson's integration rule. The values

of q were chosen to be those deduced in chapter 6 for the plywood and carpet-

on-plywood surfaces. The computations were limited to dimensionless arc lengths

corresponding to ]_1 _- 2.

T.2 Particulars of the Measurements

Experiments were conducted to measure the insertion lSss along the surface of the

plywood ridge with and without the thin carpet overlay. The experimental method

and data reduction was the same as that described in chapter 4. In short, the field

microphone was laid upon the ridge surface with the microphone cartridge housing

touching the surface. In this way, the center of the microphone diaphragm was

approximately 1/8 in (or _ 3 mm) above the surface. In the case of the carpet-on-

plywood surface, the field microphone was not buried in the carpet but was able to

rest on top of the carpet fibers.

Originally, all data was captured with the normal to the microphone diaphragm

tangent and parallel to the ridge centerline. However, it was found that such an

orientation introduced significant microphone sensitivity effects at points of large

and negative _. Therefore, at points of _ < 0, the microphones were oriented such

that the diaphragm normal was tangential but transverse to the ridge centerline.

Reference waveforms were captured as described in chapter 4 but always such that
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the reference microphone shared the same orientation as the field microphone. In

this way, a reference waveform and field waveform pair was captured over much

of the span of the ridge. In fact, for the plywood surface data was captured every

10cm from 8 -- -80cm to 8 -- 100cm, where s is the arclength from the apex and is

positive in the shadow zone. At s - 100 cm, the field waveform was not significantly

larger than some of the background noise. Contamination by noise was an even

bigger problem for the data captured on the carpet-on-plywood surface since the

softer surface automatically made for small signals. Thus, for this surface, data was

captured every 5 cm from 8 = -60 cm to 8 -_ 60 cm. Past 8 - 60 cm, the field signal

was practically indistinguishable from the background noise for this surface.

The measurement error associated with the arc length was estimated to be less

than 5 mm including the influence of deviations in the curved from that of a perfect

circle or parabola. The dimensionless arc length was defined as

(7.3)

and so d_ _ ds. In this way, the error in _ was estimated to be approximately 0.01

at 10 kHz.

7.3 Comparison of the Predicted and Measured Insertion Losses

The computational and experimental results for both types of surface and for fre-

quencies of f = 10, 20, and 30kHz are shown in Figs.(6.1-6.3). In regard of the

plywood surface, the insertion loss curves are approximately the same as those for a

rigid surface. The curves for the plywood surface also have little dependency upon

frequency. Mathematically, this is because [ql _: 1 in these cases, and so the value

of G is largely determined by w_ (s), which, of course, is independent of frequency.

Physically, a simple inspection of the plywood surface revealed that the dimensions

of the surface pores of the plywood were much smaller than any wavelength within
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the frequency range. In fact, by the methods of chapter 6, the plywood surface was

found to behave as a thin porous layer backed by a rigid surface, or equivalently, as

a porous medium with a rapid variation in porosity with depth into the medium.

The effective flow resistance was found to be very large. This result implied either

a very small porosity or very small pore dimensions relative to a wavelength. In

this case, the real part of the impedance, or resistance, was shown to be effectively

independent of frequency while the imaginary part of the impedance, or reactance,

was inversely proportional to frequency, although much larger than the resistance

except at very high frequencies. It is well known that the resistance is related to

the amount of acoustic energy absorbed by the surface. For instance, in the case of

plane wave reflection, the time-averaged acoustic power flowing into the surface per

unit area is proportional to the resistance. In the case of spherical wave reflection

one expects a similar relationship. Therefore, the absorption of the plywood surface

is expected to be relatively independent of frequency for the range of frequencies

considered. From this perspective, it follows that the insertion loss on the plywood

surface should be relatively independent of frequency as well.

In the case of the carpet-on-plywood surface, the insertion loss is seen to be a

strong function of frequency. This result is in keeping with the fact that Iql is on

the order of unity or larger. Also, by inspection, it was clear that the porosity and

pore dimensions of the carpet were much larger than those of the plywood although

still smaller than a wavelength. Again, in chapter 6, it was found that the semi-

empirical impedance model of Delany and Bazley for fibrous absorbent materials

provided a good match with the experimental data obtained with the carpet-on-

plywood surface. In their model, the resistance and reactance are relatively strong

functions of frequency. Therefore, the scaled admittance, ]ql, is not small but is

a strong function of frequency. Thus, the insertion loss on the carpet-on-plywood

surface should be a strong function of frequency.
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The general nature of the curves show that the insertionlossof a hard surface

isappraximately -6 dB at _ = -2 and variesrelativelyslowly with _ when _ < 0.

However, when _ > 0, that is for pohnts in the shadow zone, the insertion loss

increases steadily with _. For softersurfaces,and for _ < -1, the value of the

insertionloss is relativelyindependent of _ but isa strong function of frequency

and, in fact,increaseswith frequency. At points of positive _, in the shadow zone,

the insertionlossincreasesquicklywith _. The slope of the curve in the region _ > 0

also appears to increase with frequency. This isin keeping with the concepts of the

Geometrical Theory of Diffractionwhich predicts that the attenuation of creeping

waves isa function of frequency.

Figs.(6.2-6.3)show the effecton the predicted insertion loss on the carpet-

on-plywood surface due to a change in the effectiveflow resistance,a,, from a0 =

1.6 × 106 (MKS) to a_ = 0.8 × 106 (MKS). As discussed in chapter 6, a0 was the

best fit, low frequency flow resistance while a_ was the adjusted high frequency

flow resistance. The use of a frequency dependent flow resistance, as, was justified

in chapter 6. Since a = a0 until 14.5 kHz, only one curve of the insertion loss above

the carpet-on-plywood surface was shown in Fig.(6.1). The use of the frequency

dependent a resulted in noticeably improved predictions of the measured insertion

losses.

An interesting result for the plywood surface is that the predicted insertion loss

at the apex is 0.42 dB ]ess than that for a perfectly rigid surface. This effect is no

doubt related to the negative excess attenuation effect predicted and measured for

the flat plywood surface when the source and receiver were close to the surface, that

is, when the angle of incidence is near grazing. The apex, of course, is defined as

the point of grazing incidence so the effect appears to be in accord with the theory

discussed in chapter 6.

At 10 kHz, there is excellent agreement between the predicted and measured

insertion losses in the region _ < 0. In fact, the agreement would be good for a
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wide range of large effective flow resistances, a. However, in the region _ > O, the

sensitivity of the predicted insertion loss to the magnitude of o is not negligible.

Not surprisingly, when _ > 0, the agreement is not quite as good as when _ < 0,

particularly at the larger values of _. This result was partially explained by the

decreased signal-to-noise ratio at large positive _. Still, the figures show that, when

> 0, the predicted increases in insertion loss, as _ or f increases, do not keep

pace with the corresponding measured increases in insertion loss. Lower values of

a would be required to match the measured data.

Remember that the results of chapter 6 indicated that the plywood surface is

not locally reacting and that its best fit cr was a factor of ten lower for slightly larger

angles of incidence (i.e. slightly larger than grazing incidence). Further, the field

at a point on the surface was certainly influenced by the impedance of all points

of the surface which lay forward (toward the source) of that point, although the

impedance of points near the apex probably had more influence on the insertion

loss than did the impedance at points farther forward. From this perspective, it

is not surprising that the measured surface data for _ > 0 is more like what one

would predict if a_ was some average of a_'s found at various angles near grazing.

One other consideration is that the actual plywood surface of the ridge was three

times as thin as the plywood surface of the flat table top, which, of course, was the

surface used to deduce the plywood impedance. This difference also may account

for part of the indication that the curved surface is softer than the flat table top.

The data for the carpet-on-plywood surface was perhaps more interesting be-

cause of its strong dependence on frequency. The general shape of each curve was

the same and similar to that found for the plywood surface. However, the inser-

tion loss increased with frequency for all points of _. This result is in accord with

the predictions of the theory and with what might have been expected by physical

intuition. The agreement between the measured and predicted insertion losses was
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againexcellent at 10 kHz, but the predictions based upon the low frequency effective

flow resistance, a0, underestimate the measured insertion loss at the higher frequen-

cies. However, when the predictions are calculated for aoo, then the agreement with

measurement was improved.

In conclusion, when one considers that all measurements were likely to contain

an inherent error of at most +2 dB, the experimental data is in excellent agreement

with that predicted by the theory even when both surfaces were modelled as fibrous

absorbent materials with a - 1.6 × 106 and _ - 80 × 106 kg/(m s -s) for the carpet-

on-plywood and plywood surfaces, respectively. More sensible considerations of the

surface structure and its associated impedance were not detrimental to the match

between experiment and prediction. In the case of the carpet-on-plywood surface,

the inclusion of a frequency dependent flow resistance improved the match at higher

frequencies. In the case of the plywood surface, the inclusion of the thin, porous

layer model did not improve the match, but did not significantly degrade the match

either.



123

CHAPTER VIII

MEASUREMENT OF THE ACOUSTIC FIELD

ABOVE AND BEHIND THE CURVED SURFACE

Just as chapter 7 was devoted to an analysis of the theoreticaland experimental

resultsfound for the case of a listeneron the curved surface,thischapter isdevoted

to an analysis of the resultsfound when the listenerislocated above or behind the

curved surface. However, this chapter ismore extensive than chapter 7 because of

the need to analyze the resultsat various distances from the apex in the bright

zone, penumbra, and shadow zone. These regions were defined in chapter 3 as

those regions located well above the curved surface,behind the surface yet near the

lineof sight,and behind the surface but well below the lineof sight,respectively.

The solution valid in all three regions was expressed in terms of the Fock-van-

der-Pol-Bremmer function, G. An alternate form of this function was used to

calculate the theoretical results at the surface, as presented in chapter 7. In this

chapter, theoretical results which were obtained from an approximate form of G are

presented. In addition, theoretical results which were obtained directly from the

geometrical acoustics solution, the creeping wave series solution, and the knife-edge

diffraction solution are presented.

The analysis and comparisons of the theoretical and experimental data are

similar to those made in chapter 7. Experimental data was captured along vertical
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lines located at z = 0, 63, 120, 200, and 400cm downstream from the apex of

the curved surface. These distances correspond roughly to O, R/4, R/2, 4R/5,

and 8R/5. As before, both origins of the (z,_) and (_,r/) coordinate systems were

located at the apex. Enough data was captured at each z location such that, at a

given frequency, a fairly well resolved curve of insertion loss versus distance above

and below the line of sight was obtained. Typically, an incident acoustic pulse was

such that reasonable levels of its Fourier transform ranged from 5--40kHz. The

data presented here was limited to frequencies of 10 and 20 kHz. At each of these

frequencies, the magnitude of the Fourier transform of a typical incident pulse was

near that of the peak magnitude of the entire transform. The intent was to minimize

errors associated with low signal-to-noise ratios while also providing a fair range or

ratio of frequencies. For the laboratory value of R -" 2.5 m and c = 345.6 re�s, these

values of frequency corresponded to/oR = 454 and 909, respectively.

In general, the results showed a good comparison between theory and exper-

iment. This was particularly true of the data captured at z = 0 and z = 63 cm.

At these locations the discrepancy was less than 2 dB in most cases. However, at

points further away, the discrepancy was found to be as large as 5 dB in some cases.

A more detailed assessment of all the results follows.

Measurement errors were of the same order as those d/scussed in chapter 7,

and the derivation of error ranges was done in the same manner as well.

8.1 Insertion Loss in the Bright Zone

The abilityof the plane wave geometric acoustics solution to predict the insertion

lossat points in the bright zone isimportant because thissolution isconceptually

and computationally simple. In addition,an asymptotic version of itserved as the

radiation boundary condition in the derivation of G. In the bright zone, then, the

accuracy of G should be comparable to that of the thisgeometric acousticssolution.
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Thus, it seems appropriate to compare the plane wave geometric acoustics solution

to the experimental data before presenting and discussing the results involving

G. Further, since the spark source simulated a point source in the experiments,

the geometric acoustic solution for a point source is also presented. This solution

should yield a better comparison to experiment than does the plane wave version,

and as such can be used as a test of the reasonableness of the experimental data.

The insertion loss above a curved surface should be well approximated by both

geometrical acoustics solution so long as the receiver is in the bright zone; that

is, not too close to the curved surface or the line of sight, which are caustics. In

chapter 3, the geometric acoustics solution for an incident plane wave was shown

to be

p- P,e '_ -_ P,[A(O)/A(l)]ll2_e'_=o e'k_ (3.1)

When the listener is in the vicinity of the apex, a simpler approximate form of the

solution was written as

{,+[Q }
where

Q = [(4/9)x2 + (2/3)Rv]'/2

42= (2klR2)IQ3 - (8/27)xs - (213)Rxy]

(3.3)

(3.4)

An asymptotic form of (3.2) was the radiation boundary condition, referred to

above, used to solve the boundary value problem of chapter 3. In all of the figures,

(3.2) was referred to as the _plane wave geometric solution _.

As mentioned above, the experimental data was generated by a point source,

namely the spark source. The point source solution is developed in appendix C and

is similar to that for a plane wave. This similarity is expected since the plane wave
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solution is equivalent to the point source solution when the point source is moved

to infinity. In short, the point source solution is written as

s r r0  A(l) }

where S is the source strength.

One aspect of these solutions which should appear in the calculated data has

to do with the relative phase of the point source solution compared to the plane

wave solution. In the case of a plane incident wave, the phase of the direct (non-

reflected) ray is independent of the listener height, V, while, in the case of a point

source, the phase of the direct ray increases with an increase in y. In both solutions,

the phase of the reflected ray increases with an increase in y; but since the point

source is located relatively far from the apex, the phases of the respective reflected

rays are nearly equal. Further, in the case of a point source, it is easy to see from

the ray geometry that an incremental change in l/produces a greater net change in

the reflected ray phase than in the direct ray phase. This fact is obviously true in

the case of a plane wave. Thus, one can conclude that an incremental change in y

produces less of a net change in phase in the case of a point source solution than

in the case of a plane wave. Consequently, the oscillation rate with respect to y of

the plane wave solution should be higher than that of the point source solution.

Both geometrical acoustics solutions were derived under the assumption that

the listener is in the vicinity of the apex but atleast several wavelengths away

from the surface. Therefore, it is reasonable to expect the best agreement with

experiment to occur at small rather than large values of x. Consider the data at

z = 0cm mad f = 10 and 20kHz as shown in Figs.(8.1-8.2).

As discussed above, the plane wave solution did indeed oscillate more rapidly

than the point source solution. Another interesting aspect of both geometric solu-

tions was that the magnitudes of adjacent peaks and troughs axe similar but not
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identical. In fact, in the case of the carpet-on-plywood surface, the peak and trough

magnitudes decrease slightly with height, while in the case of the plywood surface,

the peak and trough magnitudes increase slightly with height. An explanation of

this result was found in the functional dependence of the reflection coefficient on

the angle at which the reflected ray struck the surface. As y increased, the angle of

incidence decreased, and in the case of the plywood surface, the magnitude of the

reflection coefficient increased, thus yielding larger peak to trough variations as _t

increased.

In the figures, the abscissa is Y which is related to but distinct from y. As

was shown in chapter 3, Y is the dimensionless height found in the knife-edge

diffraction formula (3.28) which was derived from the Fock-van-der-Pol-Bremmer

integral through the use of the method of steepest descents. That is, Y is meaningful

for the general solution, G, and was, as will be soon shown, used as the abscissa in

plots of those results. Y is not necessarily more meaningful than y in the case of

the geometric acoustics solutions. However, for consistency, Y was also used as the

abscissa in the plots of the geometric acoustics results.

Consider the case of the carpet-on-plywood surface. The agreement between

the experimental data and the point source solution is excellent when Y _ 1. In

fact, in this region, the experimental data for the carpet-on-plywood surface fit

the point source curve to within 1/2 dB at each of f = 10 and 20kHz. The plane

wave curve also agrees rather well with the experimental data when 1 _ Y _ 2.

However, when Y _ 2 the agreement becomes progressively worse as Y increases.

This is as expected because, as discussed above, the plane wave solution does not

accurately represent the net change of phase associated with the rays emanating

from the actual source used in the experiments. In the region Y _ 1, both the

point source and plane wave curves fail to maintain the same accurate fit with the

experimental data. This is not surprising since neither solution is expected to be

valid for small Y.
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In the case of the bare plywood surface, the geometric solutions compare well

with experimental data although not as well as in the case of the carpet-on-plywood

surface. In fact, an eyeball best fit of the experimental data would appear to

fall in between the plane wave and point source curves, although for Y _ 3, the

experimental data is clearly better fit by the point source curve. Part of the problem

with the plywood surface data is that there is not as much of it as there is of

the carpet-on-plywood surface data. This is particularly evident in the results at

f - 20kHz. However, it also appears that the experimental data is simply not

as well fit by the theory as in the carpet-on-plywood surface case. An interesting

result is that both solutions fit the experimental data rather well at small values of

Y. This result is due to the fact that the plywood is hard enough that, at listener

locations near to the surface, the insertion loss is expected to be around -3 dB. In

chapter 7, the insertion loss measured at the apex of the plywood surface was also

approximately -3 dB. Thus, the good comparison between the geometric solutions
o

and the experimental data for z = 0 and small Y is not surprising for the plywood

surface. However, such a comparison can only be anticipated when the surface is

hard.

At z = 63cm, Fig.(8.3-8.4), the results are very similar to those at z =

0 cm. Again, for the carpet-on-plywood surface, the point source results fit the

experimental data extremely well when Y > 1 but the fit becomes progressively

poorer as Y gets small. For the bare plywood surface, the results mirror those at

x-- 0cm.

At x - 120cm, the results are somewhat different from those at x - 0 and

63 cm. In the case of the plywood surface, Fig.(8.5) shows that the point source so-

lution follows more closely the experimental data than does the plane wave solution

although both solutions appear to oscillate faster than what one might envision as

being described by the data. In the case of the carpet-on-plywood surface, Fig.(8.6),
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the plane wave solution appears to overestimate the oscillation rate indicated by the

data. However, the point source solution appears to underestimate the oscillation

rate of the data. That is, the point source solution reaches its first trough at a Y

which is larger than the Y of the data's first apparent trough.

It is clear that both geometric acoustic solutions compare worse with the z =

120 cm data than they do with the x = 0 or 63 cm data. This result is not surprising

since both geometric acoustics solutions assume that the radius of curvature, R =

2.5 m, is much larger than any of the other relevant dimensions. Obviously, 250 cm

is not that much larger than 120m. In addition, intuition leads one to expect

greater diffraction effects at larger x since for a given y, points of larger x are in

closer angular proximity to the line of sight than are points of smaller z. This idea

is depicted by the well-known penumbra cone emanating from the apex of a curved

surface. Perhaps, then, the experimental data at x = 120 contains more significant

diffracted contributions than does the data at x = 0 and 63 cm. (This possibility is

examined in the next section.) As with the x = 0 and 63 cm results, the results at

z = 120 cm indicate that, when Y < 1, both geometric acoustic solutions compare

poorly with the measurements made over the carpet-on-plywood surhce.

The results at x = 200cm, Fig.(8.?-8.8) are quite similar to those at x =

120cm. Again, the point source solution compared better with the experimental

data than did the plane wave solution. Also, as at z = 120 cm, the apparent oscilla-

tion rate of the experimental data was between that of the point source and plane

wave solutions in the case of the carpet-on-plywood surface, and was greater than

that of both solutions in the case of the plywood surface. Some of the discrepancy

may be due to diffraction effects which are discussed in the next section.
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Near the apex and along the lineof sight,the basic concepts underlying the geo-

metric acoustic solutionsfailto be valid.So, itwas not surprisingto find that these

solutionsalsofailedto consistentlyyield an accurate prediction of the fieldforsmall

Y. In contrast, the Fock-van-der-Po]-Bremmer function, G, of chapter 3, which is

restated here as

1 yea - rl)- Ca) - qv(c_) Ca - 17) e'°_ C3.21)

was derived for small Y; that is,at listenerpositionsnear the apex or in the not too

distant penumbra. (7 was also shown to asymptotically approach the plane wave

geometric acoustic solution for small Y. Thus, (7 should yield a good comparison

with the experimental data when Y < 1 and should approach the plane wave

geometric acoustic solution as Y increases.The form of (7 used in the calculations

was the saddle point approximation

(7= # + 9, (3.26)

where

1 _= e,,e,,,./, v'C,.s) - qe'2"13v(s) w_(8 - r/e'2"13)d.s

1 Too v'(8)- qv(s)
_)d8

(3.27)

and

[ '" ]e_,_, /3 e,_, H(y) _ e" , e,._,/,-- '" AD (Y) (3.28)

where

Y = - r/X/'(_¢- r/I/2) (3.29)

This form was chosen because it offered a ready physical interpretation as well as a

meaningful dimensionless parameter, Y. As discussed in chapter 3, Y isviewed as a
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dimensionless height and isproportional to Wi/4(_ _ r/1 / _2), where (_,r/)are parabolic

coordinates. Since r/> 0 everywhere off the surface,Y = 0 represents any and all

points on the line _2 = z/,which, for increasing x is an upward sloping parabola

in the (x,y) coordinate space. Although Y isdimensionless, one could not a priori

expect Y to normalize the resultsat differentz positions. This istrue because G

is an explicitfunction of the coordinates (_,r/)as well as of Y. Therefore, since

an infinitenumber of (_,r/)coordinate pairs exist which correspond to any given

value of Y, many differentmagnitudes of the background terms can exist for any

given value of Y. However, for a given x and f, a one-to-one mapping does exist

between Y and y. Thus, in those figureswhere z and jrare specified,the results

would appear the same ify was used in place of Y.

Figs.(8.9--8.10)show the resultsat z = 0cm when f = 10 and 20kHz, re-

spectively.The figuresshow clearlythat, for both surfaces,G does, in fact,match

the plane wave geometric acoustic solution when Y > 1. However, as seen by the

progressiveseparation of the curves, the geometric solutionhas a slightlyslower os-

cillationrate with Y than does G. The discrepancy isnot significantfor 1 < Y < 3,

and isprobably due to the fact that G matches the geometric solution when Y is

small, but not necessarilywhen Y isnot small, such as when Y > 3. The discrep-

ancy appears to be slightlydependent on the value of q. For instance,in the case

of the carpet-on-plywood surface,the match isnearly exact for Y < 3,while, in the

case of the plywood surface, the match is on the order of i dB or less.Of course,

then, the match with experiment, when Y > 1,isroughly the same as was discussed

for the plane wave geometric solution.At the largerY, the curve of G does match

the experimenta| data better than does the plane wave geometric acoustic curve.

However, this result is probably coincidental since the geometric acoustic solution

is expected to be more valid than G when Y is large.

The most significant aspect of the figure is that, when Y < 1, G manages to

match the experimental data to within 2--4 dB, and in most locations to within 2 dB.
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solution,respectively.Y isthe dimensionless height (3.29).
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This result holds true for both types of surface and at both frequencies, f -- 10 and

20 kHz. As was noted previously, the geometric acoustics solutions were expected

to fail in this region although the results for the bare plywood surface were still

very good until Y _ 1. The results for the carpet-on-plywood surface show the

geometric solution's failure more clearly.

In chapter 7, it was shown that an alternate form of G gave very good agreement

with experiment for most listener locations on the surface. So it was not surprising

that G also matched the experimental data when x -- 0 and Y were small. In fact,

G was derived under the assumption of x, _ _ R and was expected to be valid near

the surface. However, it was unclear how valid G remained at z on the order of

or greater than R. It was expected that G would compare less and less well with

experiment as x increased, but the extent of this departure could not be ascertained

a priori.

Figures(8.11-8.12) show the results when f = 10 and 20kHz at x - 63cm,

which was roughly a distance of R/4 downstream from the apex. Again, when

Y > 1, G matched the geometric acoustics solution to within ±2 dB for the plywood

surface and to within ±1 dB for the carpet-on-plywood surface. Further, for both

surfaces, G matched the experimental data nearly point-to-point for -1 __ Y

1. For the carpet-on-plywood surface, there was one experimental data point at

Y _ -0.3 which was noticably removed from the theoretical curve and from the

apparent trend of the other experimental data. Since it stood alone and the other

data were rather well aligned, it was assumed that this data point was spurious.

The significant result was that G had produced an excellent prediction of the

experimental data near a caustic, in this case, the line of sight, as well as at points

in the lower portion of the bright zone. It should be mentioned that the predicted

insertion loss would not be significantly effected by assuming the plywood surface

to be rigid. A similar result was found when the listener was on the surface. Thus,
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there was a certain amount of liberty in choosing the effective flow resistance pa-

rameter, a, without fear of jeopardizing the result. However, the same was not

found to be true for the carpet-on-plywood surface. In that case, the predicted

insertion loss was quite sensitive to the value of a; that is, IGI was sensitive to

a when its associated magnitude of the scaled admittance, q, was on the order of

unity. Since the predicted insertion loss involved no free parameters, the fit between

the predicted and measured insertion losses was indeed excellent for the carpet-on-

plywood surface. Note that the insertion loss below the line of sight was larger

for the carpet-on-plywood surface than for the bare plywood surface. This result

is in accord with the common sense notion of carpet as an absorber compared to

plywood.

At x -- 120cm, Figs.(8.13-8.14) show that the results here were only slightly

less good than those at x - 63 cm. Aside from the same type of mismatch between

theory and experiment in the bright zone, as was seen and discussed in the data

at x - 0 and 63 cm, the predicted insertion loss at x = 120 cm was within 2 dB of

the measured insertion loss except at points deep in the shadow zone of the carpet-

on-plywood surface. There, the disagreement was approximately 3-5 dB. For both

surfaces, and for listener positions in the shadow zone, the theory over predicted the

measured insertion loss. Near the line of sight, which corresponded to Y = -0.08

when x - 120cm and f - 10kHz, the agreement was within 1-2dB for both

surfaces. The figures also show the influence of diffracted contributions in the lower

bright zone. This influence is seen in the separation between the geometric solution

and G when Y _ 1/2. This same effect was observed in the results at x = 63 cm

but, there, it was not as significant. Comparisons of both G and the geometric

solution to the measured data in the bright zone should be viewed with caution

because the source used in the experiments was a point source, not a plane wave;

and, as discussed above, the phase effects of these two types of sources are different
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and this difference can be important. Results similar to those at z = 120 cm were

found in the lower bright zone when z = 200 cm.

The first large disagreements between predicted and measured insertion losses

were found in the penumbra and shadow zone at z = 200 cm. In the case of the

plywood surface, Fig.(8.15) shows that G over predicted the measured insertion loss

by 2-3 dB throughout the penumbra and shadow zone. In the case of the carpet-

on-plywood surface, Fig.(8.16), G over predicted the measured insertion loss by

3 dB near the line of sight, and by 3-5 dB in the shadow zone. The disagreement is

slightly more pronounced in the data at f = 20 kHz, particularly at listener points

deep in the shadow zone behind the carpet-on-plywood surface. At the deepest of

these points, the discrepancy approaches 10 dB. This disagreement does not appear

to be due to a low signal-to-noise ratio because the data, as a group, does not exhibit

an unreasonably large scatter. It is more likely that the solution, G, itself is near

or beyond its range of applicability. An investigation of the knife-edge diffraction

plus background expression (3.26-3.28) for G proved useful.

Fig.(7.19) shows the magnitudes of the knife-edge diffraction and background

components of the total solution at different z positions. For a given Y, the magni-

tude of the background component becomes increasingly small as z increases while

the magnitude of the knife-edge diffraction component, which is a function of Y

alone, is independent of z. This trend indicated that at some large z, the back-

ground component of the total solution could be discarded leaving G _, • (3.28).

However, • is not a reasonable solution at large z because of the nature of the

dimensionless height Y. As was stated earlier, Y = 0 is a parabolic curve ema-

nating from the apex and curving upward as z increases. For example, Y = 0 at

z = 200cm represents a point whose height, y, is greater than that at a point of

Y = 0 and z _ 200 cm. The result of these facts is that, at large z, G predicts that

the insertion loss at a point well above the line of sight is approximately the same
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as that predicted by (3.31) at a point on the line of sight. (3.31) is the solution at

large z for the case of a thin rigid wedge. Therefore, it follows that, at similar points

along the line of sight of a curved surface and at large x, G will predict the insertion

loss to be approximately the same as that at a point deep in the shadow of a thin

rigid wedge. Such a prediction runs counter to intuition in that, at large enough x,

the field behind any curved surface, independent of the surface impedance, would

be indentical to that behind a thin rigid wedge. That is, G does not transition

to (3.31) as required of any solution valid at large x. The conclusion is that, at

moderate to large x, the background contribution to G is too small to adjust for

the discrepancy between @(Y) and the thin rigid wedge solution. The result is that,

independent of the surface impedance, G overestimates the insertion loss behind a

curved surface when x is large.

The results at x = 400cm, shown in Figs.(7.17-7.18), support the above rea-

soning. At this value of x, which corresponds to 1.6 R, the disagreement between

G and experiment is on the order of 8-12 dB in the penumbra and shadow zone.

It should not be inferred from the above discussion and results that the back-

ground contribution at x = 400 cm was negligible. Nor should it be inferred that the

background contribution always produced a better fit between G and measurement

than that between ¢ (Y) and measurement. Fig. (8.20) shows all of the experimental

data at x = 63, 120, 200, and 400 cm, as well as the corresponding curves of G, for

both surfaces when f = 10kHz. Also included is a curve of _(Y). In the case of

the plywood surface, the background contribution is seen to reduce the predicted

insertion loss in the penumbra and shadow zone relative to that predicted by the

knife-edge diffraction contribution alone. However, as x increases, the measured

insertion loss tends to shift to the left, while the predicted insertion loss shifts to

the right toward the knife-edge diffraction curve. The result is that the disparity

between the measured and predicted insertion loss increases as x increases, as dis-

cussed above for each individual case. In the case of the carpet-on-plywood surface,
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the background contribution is seen to increase the predicted insertion loss in the

penumbra and shadow zone relative to that predicted by the knife-edge diffraction

contribution alone. In this case, as x increases, the measured insertion loss clearly

shifts to the left, but the predicted insertion loss also shifts to the left, yet still to-

ward the knife-edge diffraction curve. However, the leftward shift of the predicted

insertion loss does not keep pace with the leftward shift of the measured insertion

loss. In fact, the background contribution is such that the predicted total insertion

loss is always greater than the insertion loss predicted by the knife-edge diffraction

term alone. A misleading result of this behavior is that the measured insertion

loss at x - 200 cm happens to be shifted such that it is well fit by the knife-edge

diffraction curve. At first glance, this result suggested that, at x -- 200 cm, the

carpet-on-plywood curved surface had already begun to effect the field in the same

manner as a rigid knife-edge. However, the measured data at z -" 400cm did not

also match the so-called knife-edge diffraction curve; in fact, the match was much

worse. This result, along with the fact that the functional form, _, of the knife-edge

diffraction term is identical to that of (3.31), suggested what was hinted and implied

earlier: Y is not an appropriate dimensionless height when z is not small.

A good candidate to replace Y" is the dimensionless height

which has the quality of being zero when y is zero. Further, the magnitude of _ is

related to the angular distance of a point from the line of sight. This feature results

in predictions of similar insertion losses for points of similar angular distance from

the line of sight. Such a result is in accord with the concepts of the Geometrical

Theory of Diffraction. In that theory, diffracted rays are seen as having traveled

around the curved surface from points of diffraction to points of departure from

which the diffracted rays are shed tangentially and travel into the shadow zone.
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Thus, forrays having been diffractednear the apex, the shadow zone rays willfollow

straight paths which would nearly intersectwith the apex ifthey were extended

back toward the apex. In this way, the GTD also predicts similar insertionlosses

for points in the shadow zone of similarangular distance from the lineofsight,losses

due to spreading not withstanding. Finally,the magnitude of ¢ isproportional to

the square root of frequency. The resultof this relationshipisthat any described

width of the penumbra decreases with increasingfrequency but the penumbra itself

is nonetheless always centered about the line of sight. In Fig.(8.21-8.22), the

experimental data at x -- 63, 120, 200, and 400cm is replotted with ¢ as the

abscissa. It is clear from the figure that for both surfaces, ¢ gave a reasonably

good normalization of the data. It is worth noting that at small but non-zero x,

Y is approximately equal to ¢. Thus, at x = 63 cm, for instance, it is appropriate

to refer to the solution G as being comprised of the superposition of a knife-edge

diffracted field and the field of the background terms, _ (3.28). At large z, _(Y)

no longer approximates the knife-edge diffraction formula.

8.3 Insertion Loss in the Penumbra and the Rigid Wedge Solution

In chapter 3, and in the previous section,itwas suggested that the insertion loss

at large x behind a curved surface may be approximated by that behind a rigid

knife-edge or thin wedge. This suggestion arose partly out of the form of (3.26-

3.28) because the second term, _, was shown to be small when x islarge. At such

locations,G isapproximately equal to @, which has the form of the rigid-knifeedge

solution.

To investigatethissuggestion,the insertionlossbehind a wedge was measured

at x = 63, 120, 200, and 400cm from the vertex. The wedge used for these mea-

surements was described in chapter 4. Figs.(8.23-8.26} show the data at the four

downstream positions,and at f = 10 and 20kHz. Again, the abscissae are the
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dimensionless height, _b. Also shown in each figure is the predicted insertion loss

behind a rigid wedge as well as the insertion loss measured behind the plywood

and carpet-on-plywood curved surfaces. The predicted insertion loss was computed

from

where

(3.31)

krr. _ x12
X = _, _rL } A_b and A#b = _b- (_b, - _r) (3.32)

which assumes that the listener is near the line of sight and sufficiently far from the

vertex. In this formula, the dimensionless height, X, is similar to lb. Therefore, the

actual computations were carried out with X replaced by lb.

Computations based upon (3.31) compare fairly well with the experimental

data obtained using the laboratory wedge. At x = 63,200 and 400 cm, the difference

is about i dB except at points deep in the shadow zone. At x = 120cm, the

predicted insertion loss behind a rigid wedge is approximately 2 dB greater than

that measured behind the laboratory wedge. At all four x positions, the difference

tended to decrease as tb increased. At points deep in the shadow zone, the larger

deviation from the theory might be attributed to the limitation of the theory, namely

that the listener be near the line of sight.

Interestingly, at x = 120, 200 and 400cm, the predicted thin wedge data

matches the measured plywood curved surface data rather well in the lower bright

zone; that is, when 1 < lb < 2. However, at x = 63cm, the first oscillation in the

plywood data begins at a smaller lb than does that in the predicted wedge solution,

and so, the match is not quite as good in this case. These results axe not surpris-

ing since, as x gets large, the diffracted rays travel only a short distance along the

top portion of the curved surface and are, therefore, influenced only by the surface

properties in the immediate vicinity of the apex. In this way, the diffraction process

is like that of a knife-edge. Since both surfaces are hard, one might expect similar
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diffracted transmissions into the bright zone, and therefore, also similar insertion

losses,when z is large.

At allfour z positions,and for any location in the penumbra or shadow zone,

the insertionlossmeasured behind the wedge isgreater than that measured behind

the plywood surface and lessthan that measured behind the carpet-on-plywood

surface. In addition, the differencein the measured insertion losses behind the

wedge and behind the plywood curved surface data is slightlysmaller at each z

than at the next smallest z. The differencesare approximately 3, 2, 1, and IdB at

z - 63, 120, 200, and 400 cm, respectively.In the case of the carpet-on-plywood

surface,the differencein the measured insertionlossesis in the range of 4-6, 3-4,

2-3, and 2-3 dB at z -- 63, 120, 200, and 400 cm, respectively.

In sum, the experimental data indicated that a hard curved surface, such as

the plywood ridge,scatters sound to locations sufficientlyfar from the apex in a

manner similarto that of a rigidwedge. The data alsoindicated that a softsurface

continues to give insertionlossesgreater than those of a rigidwedge even when z

isnot small. Finally,the data alsosuggests that the insertionlossin the penumbra

and shadow zone of a curved surface whose finiteimpedance is softer than the

plywood but harder than the carpet-on-plywood would be roughly equivalent to

that of a thin rigidwedge, independent of z.

8.4 Insertion Loss in the Shadow Zone and the Creeping Wave Series

In chapter 3, it was shown that a residue series expression for G of the form

- (3.40)

existswhen r/issufficientlysmall. It was suggested that reasonable convergence

of the seriescan be expected for _ > r/I/2.In terms of the dimensionless height,

Y, this convergence criterioncorresponds to listenerlocations of Y < 0; that is,
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to listener locations in the shadow zone or penumbra. Each term of the series was

identified with a creeping wave such that the field in the shadow zone and penumbra

was seen as a superposition of an infinite number of creeping waves or of the rays

which they shed.

In the shadow zone, the series may require only a few terms to converge. How-

ever, at listener locations near the line of sight, the number of terms required for

convergence may be large. For example, Fig.(8.27) shows the number of terms

required for convergence at each of 35 points spanning -0.58 __ Y _ 3.35 when

z = 63cm and f = 10kHz for the plywood surface. The series was deemed to have

converged when two consecutive terms in the series and their sum did not alter

the total sum by 1 part in 106. Nearly identical numbers were found at the same

frequency and x position for the carpet-on-plywood surface.

The insertion loss predicted by the creeping wave series when x = 63 crn and

f = 10 and 20kHz is shown in Fig.(8.28). As expected, the match with exper-

imental data when Y < 0 was excellent, just as it was when G was computed

as the sum of knife-edge diffraction plus background terms. However, the match

continued to be excellent well into the bright zone. A plot of the creeping wave

series solution compared to the knife-edge diffraction plus background terms solu-

tion revealed that the two solutions were practically identical until Y = 2 and only

diverged slowly thereafter. However, at some point, call it Y', the creeping wave

solution failed completely and abruptly. An example of this behavior is shown in

the results at f = 20kHz. In those results, Y" was approximately 2.3 and 2.6 for

the carpet-on-plywood and plywood surfaces, respectively.

The reason for the abrupt failure at some Y" was unclear. However, it was

significant that the creeping wave series converged at all when Y > 0. As stated

in chapter 3, Pierce has suggested that the creeping wave series expression for G is

valid when _ > _/1/2.s6 From the results of the figure, this statement is clearly
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At more negative values of Y than those shown, the number of terms

required for convergence continued to decline,although slowly,as might

be extrapolated from the above curve.
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169

true. However, the creeping wave series continued to yield approximately the same

result as G even when _ < T]l/_(i.e. Y _> 0). The explanation for the apparent

convergence of the series when Y > 0 is that the contribution from the contour

integration at infinity in the upper half of the complex plane is non-zero but still

quite small. If the contribution is small enough to be negligible, then the residue

series would still approximate the integral solution, although not exactly. Until the

computations were carried out, it was unclear just how far the _ > r/2/2 criterion

could be exceeded. The results shown in the figure indicate that the criterion is

quite conservative from a practical point of view.

Not surprisingly, at z = 120cm, the insertion loss predicted by the creeping

wave series also compared rather well with the measured insertion loss (Fig. 8.29).

Here, the good comparison is as expected since it has already been shown that

the insertion loss predicted by the knife-edge diffraction plus background formula

compares rather well with the measured insertion loss when z -- 120cm. As before,

Y" "_ 2.3 for the carpet-on-plywood case at / = 20 kHz. However, for the plywood

case, Y° was not found but was shown to be at least 3.

At z = 200 and 400cm, Figs.(8.30-8.31), the results are also similar to those

found before. Again, the measured insertion loss was over predicted by the theory

for both types of surface, particularly at z = 400cm. At z -- 200cm and / --

20kHz, the value of Y" for the carpet-on-plywood was approximately 2.4 while it

was approximately 2.6 for the plywood. It would appear that the value of Y" is a

function of _, rl, and q, although no expression for Y" is known.
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8.5 Summary

In the first part of this chapter, the results of two geometric acoustic solutions,

one for an incident plane wave, another for a point source, were compared to the

experimental data. For listener locations in the bright zone, a comparison of the

point source solution with the data proved to be excellent at x = 0 and 63 cm,

particularly for the carpet-on-plywood surface. At the larger values of x = 120

and 200cm, the comparison was not quite as good but was, in all cases, better than

that produced by the plane wave solution. These results were satisfying because the

actual experimental source, the spark source, was shown in chapter 5 to behave as

a point source. For listener locations in the penumbra, neither geometric acoustic

solution compared very well with the experimental data, although, for the plywood

surface, the comparison was good through small but positive values of Y. In the

case of the carpet-on-plywood surface, the comparison was poor for Y < 1.

Next, results based upon the Fock-van-der-Pol-Bremmer function, G, were

compared with the plane wave geometrical acoustics results and the experimental

data. The comparison showed that G mimicked the geometric acoustics results in

the bright zone, although not exactly. Disparities between the two solutions in

the lower bright zone were attributed to diffraction effects implicit in G but not

included in the geometric solution. These effects were particularly significant at

the larger x locations. In the penumbra, G also accurately predicted the measured

insertion loss at x = 0 and 63cm. The same held true at 120cm, although a

small but consistent over prediction of the measured insertion loss was also found.

At the larger x positions, x = 200 and 400cm, G consistently over predicted the

measured insertion loss in the penumbra and shadow zone. In the plywood surface

case, the over prediction was approximately 2 dB and 8-10dB at x = 200 and

400cm, respectively. In the carpet-on-plywood surface case, the over prediction

was approximately 3-5 dB and 10 dB at the same respective x locations. It was
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argued that, since the theory was derived by assuming (x, y) _: R, the disagreement

at the larger values of z was not surprising. An explanation for the consistent

over prediction was found by examining G in terms of the knife-edge diffraction

plus background formula. It was shown that the background component became

progressively smaller as x increased, leaving G _. _(Y). However, ¢(Y} was shown

not to be a good solution at any x because of the nature of the dimensionless height,

Y. In a cartesian plane, Y = 0 was shown to represent an upward sloping parabola

with the origin as its vertex. The result was that the theory, minus the background

component, predicted a line of 6 dB loss which lay higher and higher above the line

of sight as x increased, independent of the type of surface. This result ran counter

to the intuitive notion of a curved surface acting as a wedge when x is large. In the

wedge solution, the 6 dB loss line is the line of sight, independent of x. Further, it

was shown that the experimental data at all four x locations was normalized rather

well by another dimensionless height, ¢, found in the wedge solution. Since Y ._ ¢

when x is small, it was concluded that ¢ is a better suited dimensionless height

than Y, and that the knife-edge diffraction plus background formula would yield

better results everywhere if Y was replaced by ¢. In sum, G was shown to provide

excellent predictions at listener locations near to the curved surface and that its

di_culties at large x could be corrected by substituting ¢ for Y.

An attempt was made to check the notion that a curved surface acts as a

wedge when the listener is at large x. The insertion loss behind a fairly rigid wedge

was measured at x - 63, 120, 200, and 400cm, just as was done for the curved

surfaces. A comparison of the wedge data with that of the two types of curved

surfaces revealed that the insertion loss of the wedge lay between that of the plywood

and carpet-on-plywood surfaces. In fact, the measured insertion loss behind the

wedge was only slightly greater than that behind the curved plywood surface. This

difference decreased as x increased, so much so that the two sets of data practically
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coincided in the penumbra at z - 400 cm. The difference between the wedge data

and the carpet-on-plywood data also decreased as z increased, but not to the extent

seen with the plywood data. Furthermore, the theoretical wedge solution over

predicted the experimental data by approximately 1-2 dB. The conclusion drawn

from these results was that a curved surface is fairly well approximated by a wedge

when z is large, and particularly so when the curved surface is hard. Another

conclusion was that for some curved surface, whose impedance is less than that

of the plywood but greater than that of the carpet-on-plywood, the insertion loss

in the penumbra and shadow zone would approximate that at the same locations

behind a thin rigid wedge, independent of z.

Finally, the creeping wave series expression for G was found to give equally good

results as the knife-edge plus background formula, even when Y > 0. In general,

the creeping wave series was shown to yield reasonable results for Y _< 2, and

perhaps slightly higher. However, the computations also showed that the creeping

wave series tends to fail rather abruptly at some height, designated Y*. Preliminary

indications are that Y" > 2 in most, if not all, cases. In many previous publications,

it was suggested that the creeping wave series only converges for Y < 0. From a

practical point of view, this has been shown to be not true.

The creeping wave series results are important because the computation time

involved is considerably less than that associated with the knife-edge plus back-

ground expression. This fact is seen in that only two Fock functions need to be

calculated for each term of the series while eight Fock functions are involved in the

integrands of the background terms. In addition, the integration involved with the

background terms required these eight Fock functions to be evaluated roughly 75

times at each spatial point, (_, 7). There is a certain amount of time involved in

calculating the roots or singularities needed by the series, but this time is short and

the roots need only be calculated once for a given q. Thus, when the number of se-

ries terms needed for convergence is small, the series solution is significantly faster.
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Even at Y -- 2, the creeping wave series required only about 100 terms. Thus, the

creeping wave seriesoffersno worse than a 3-to-Itime savings over the expressions

involving integration. When lr <_ 0, the time savings can be 20-to-1 or greater.

However, when the background terms are negligible,both solutionsare inferiorto

a simple knife-edge solution,which isconsiderably fasterthan either expression of

G.

In summation, the theory was quite good at predicting the measured insertion

lossnear causticssuch as the surface and the not too distant lineof sight.Further,

the theory performed equally well for both the hard plywood surface and the fairly

soft carpet-on-plywood surface. An important point is that the values of q used

in the theory were deduced from measurements made over _at surfaces of similar

impedances as the curved surfaces.In thisway, no freeparameters were used in the

calculationof the predicted insertionlosses.Thus, the MAE theory of diffraction

over a curved surface of finiteimpedance appeared to be an excellent description

of the fieldnear such a surface,at leastwhen kR islarge.There issome prospect

that the resultsmay alsobe good for smaller kR on the order of unity since Keller

previously found reasonable resultsusing the GTD in thisrange.



177

CHAPTER IX

CONCLUSIONS AND RECOMMENDATIONS

Phenomena associated with long range propagation of sound over irregular topog-

raphy motivated the research work which was described in this thesis. Specifically,

the goal of the work was to analyze the diffraction effects which would occur near

the tops of hills and ridges. From this particular goal, the research work evolved

into a study of the diffraction of a high frequency plane wave due to its grazing of a

two-dimensional curved surface of finite impedance. Laboratory scale models were

constructed and measurements were made of the field on, above, and behind either of

two curved surfaces possessing distinctly different impedances; that is, one was soft

while the other was hard. The experimental technique consisted of simultaneously

measuring the pressure at a reference point and at a field point due to a transient

pulse generated by an electric spark. The pressure waveforms were digitized and

processed. As described in chapter 4, the ratio of the discrete Fourier transforms

of the two waveforms provided an estimate of the insertion loss between them. The

results of the measurements were compared with the predictions of a theory which

was derived by Pierce using the method of Matched Asymptotic Expansions (MAE).

The predictions relied upon the experimental evaluation of the impedance of each

surface at grazing angles of incidence. This evaluation was achieved by a fairly stan-

dard technique involving empirical models of various generic types of surfaces. An
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example was shown of the important role that the structural intricacies of a surface

play in the determination of an appropriate model. The comparison between the

measurements and predictions clearly indicated that the theory gives an excellent

description of the field anywhere near a curved surface. Further, with a simple

modification, the theory was also shown to give nearly as good of a description of

the field surrounding a curved surface even at distances far behind the surface yet

near the line of sight.

The elementary yet fundamental nature of this study should make the results

obtained therein useful in other studies or applications. For instance, the MAE

theory, when used in conjunction with the versatile Geometrical Theory of Diffrac-

tion (GTD), should prove to be a powerful tool for predicting the field in more

complicated geometries. This expectation is based upon the fact that the GTD has

provided good predictions of fields associated with canonical type problems, such

as the propagation of a plane wave past a sphere. The weakness of the GTD is

that it relies upon canonical solutions for the evaluation of its so-called diffraction

coefficients. Thus, when the curved surfaces involved in a propagation problem are

not of simple geometric shapes, such that a canonical solution is not available, the

MAE theory could fill the breach since it requires only that the local curvature of

a surface be smooth. An interesting extension of the current MAE theory would

be to those cases where the local curvature is not smooth but rather is continually

varying or discontinuous. In a related vein, problems involving surfaces of continu-

ously varying impedance might be well handled by a variation on the current MAE

theory as well. Further, previous work by Fock suggests that a generalization of the

solution for a plane wave to the solution for a point source located near the surface

could also be found by the methods used in the plane wave case.

Another interesting and related problem is that of echoes occuring from the

passage of a wave over curved surface. The work in this thesis dealt almost ex-

clusively with the forward scattering problem. However, there may be cases where
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diffracted echoes play an important role in the description of a field. An example

of such a case would be when one curved surface sits directly in front of another.

Then, echoes from the latter curved surface may make a significant contribution to

the field in the shadow zone of its forward sitting partner, particularly when the

forward sitting surface is soft. The same methods used in the derivation of the

theory for the forward field should be applicable to the problem of solving for the

backward field.

In chapter 1, it was mentioned that a clear analogy exists between the dif-

fraction of sound around a curved surface and the refraction of sound due to wind

or temperature gradients above a flat surface. In fact, for the case of a linear

sound speed profile, the forms of the respective solutions are identical. Therefore,

an extension of the MAE theory to the case of a surface with continually varying

curvature might also lead to the solution of more complicated refraction problems.

Clearly, each of the above mentioned problems constitutes a separate aspect of

the more general problem of long range sound propagation in the atmosphere above

irregular terrain. Thus, the MAE theory and the method used to obtain it could

be effective tools in the construction of a more comprehensive solution for the total

field.

In an even more general context, the MAE theory should be useful in suggesting

solutions to other types diffraction problems such as the diffraction of pulses or

bounded beams from curved surfaces.
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APPENDIX A

MATCHED ASYMPTOTIC EXPANSIONS

AND THE THEORY OF

SOUND PROPAGATION OVER A CURVED SURFACE

This appendix contains many of the details involved in the derivation of the theory

as presented in chapter 3. Most of what follows pertains to the derivations of (3.2),

(3.21), and (3.26-3.28), and is taken directly from a collection of notes compiled by

Pierce. Part of the derivation in section A.4 is due to Zhou.

C

A.1 Geometrical Acoustics Field near a Curved Surface

Consider a horizontal ray which is incident upon a curved surface and which reflects

according to the law of mirrors (Fig.3.2). Let R be the radius of curvature of the

surface at the reflection point (zo ,Y0). The reflected ray path is given by

x = Xo + Icos(_ - 20_)
(A.1)

Y = Yo + lsin(_r -- 28_)

where l is the distance along the reflected ray.

If the incident field is a plane wave of unit amplitude, then the acoustic field

complex amplitude in the geometric acoustics approximation is

_ -_ # = e'j'' + [A(O)/A(l)]z/u_e'kffioe 'ke (A.2)
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where R is the reflection coefficient, and A(£) is the so-called ray tube area associated

with a small bundle of adjacent reflected rays. In two-dimensions, A(l) is the

spreading of two adjacent reflected rays after propagation a distance l from the

surface. If one considers the geometry associated with the reflection of two rays

which strike the surface a distance As apart, then one can show that

A(0__.__)= RcosO, (A.3)
A(l) R cos O_+ 2t

The reflection coefficient R is that for plane wave reflection at a locally reacting

surface such that

= Z. cos O_ - pc (A.4)
Z. cos O_ + pc

where Zo is the surface impedance, and pc is the characteristic impedance of the

surrounding fluid medium. When these expressions are substituted into (A.2), a

new expression for the acoustic field complex amplitude is

The preceding analysis is valid for any surface in the geometrical acoustics

limit. Of particular interest here is the form of (A.5) in the vicinity of the top of a

curved surface. As shown in Fig. (A.1), near the top one can write

Zo = -R sin 8o

Yo = -R(1 - cos 0o) (A.6)

O_= _/2 - Oo

where 00 is small and z, !t, and l are all much less than R. Upon substitution of

(A.6) into (A.1), one finds to "leading order",

(A.7)
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or, after elimination of l

R

:(R0o)2+ 2(R0o)X- Ry = 0
2

(A.8)

This quadratic equation in RSo can be solved such that as z --* 0- and y ---, 0 + ,

one has R0o > -z as dictated by the geometry. The solution is

ROo -- -2z + [4z 2 + 6Ry] 1/2 (A.9)
3

where the result of the square root is considered positive. Then (A.7) yields

z + [4z 2 + 6Ry] 1/2
£ = (A.10)

3

If one adds t to both sides of (A.1), then one has

l + Zo -- z + I(1 -- cos 200)

z + 210o2

(A.11)

The higher order term must be kept because kR is assumed large, and so ktS_ may

not be negligible. Then, upon substitution of (A.9) and (A.10) into (A.I1), one

finds

£+Zo ,,_ z + 2 [][]2Ix+Q1 _1 2z-Q (A.12)

where

]112Q-- 4z'+2Ry (A.13)

With further algebra, one can derive

l + Zo = X + -_ - x s - -_Rxy + Q 3
(A.14)

Other factors in (A.5) can be approximated in a similar fashion. In particular,

2
R cos O_ ROo -_-z + Q

R cos 0i + 2l ROo + 2t 3Q
(A.15)
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and
27,. cosO_-pc -_z+q-_R= (x.16)

z. cosO,+ pc -_z + q + _R

Thus, in the limit of an incident ray reflectingas a plane wave near the top of a

curved surface,the net resultfor the acoustic complex pressure-amplitude is

{ r-o,+o]'",_..}_e '*= 1÷ L 3Q L-_x÷Q÷_ R
(A.17)

where

¢=_ x'+_ y- (A.18)

and again

(x.19)

which are identical to (3.2-3.4). As a check of (A.17-A.19), consider x < 0 and let

2Ry = -z 2 such that (z,y) is on the surface. In this case, since y < 0, Q = -x/3,

and ¢ = 0, so

{/_, e_kffi 1+ --

(A.20)

which is just 2e _k" in the limit of g, ---* oo for finite z. This result conforms to the

expectation of pressure doubling at a rigid surface.

Next, one can introduce scaling parameters L, and Ly such that 16e-_k* of

(A.17) is independent of k and R (although not of their product). Let

x = _,L. y = _IL, Q = Q,L.

If one substitutes for z and y in (A.18-A.19), and requires that ¢ be expressed

solelyin terms of dimensionless quantities,then the scalingparameters are found

to be

L, = R(kR) -'/3 L,, -- R(kR) -2Is (A.21)



With this terminology, another form of (A.17) is

1+
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where

3

and the local shape of the surface is given by

(A.23)

= ---. (A.24)
2

A.2 Approximate Wave Equation for Diffraction by a Curved Surface

To derive a solution valid on and near the surface, one attempts to find an approx-

[mate form of the Helmholtz (reduced wave) equation which can be solved readily.

To begin, as was done in deriving the geometric acoustics solution, the local shape of

the surface near the apex is approximated by the parabola y = -x _/2R. Consider

the Helmholtz equation

c_p c92p (A.25)
cgz----_ + _ + k2p = 0

when x _: R and y << R and with the boundary condition

ikpc

Vp. _ + -_--p = 0 at the surface, (A.26)

where _ is the outward normal at a point on the surface.

To facilitate the solution, one adopts a parabolic coordinate system which is

a natural coordinate system for the given geometry. The relationship between the

cartesian coordinates and the new parabolic coordinates is chosen to be

z = u [1 + (v/R)]

v=v [1+
(A.27)
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such that

[dd_]_ [l+v/R_u/R I_/_R] Ida] (A.28)

With this choice of coordinates, the diffracting surface corresponds to v - 0. The

(u,v) coordinate system is orthogonal in that

Vu-Vu - 0 (A.29)

The determinant of the 2 x 2 matrix in (A.28) is

DC ,v)= C1+  IR) 2+ ( IR)2 (A.30)

The basic rules of orthogonal curvilinear coordinate transformations can be used to

express the Helmholtz equation (A.25) in the parabolic coordinates as

c_p + cg2p k2D(u, (A.31)a----T _ + v)p = o

Likewise, the boundary condition (A.26) can be reexpressed as

8p ikPCD_/=(u,O)p=O at v = 0. (A.32)
a-6+ z.

Since the incident wave is planar, let

p _ ¢,h, F(u, v) (A.33)

such that F satisfies

2ik H- _-u: H- _-_-v_H- H- _-_" H- _-_" F=O (A.34)

with the same boundary condition (A.32). The second and fifth terms in (A.34)

are expected to be much smaller than the other terms when [ul _ R and v _:: R.

If the smaller terms are omitted, and if the (u,v) coordinates are scaled as in the

geometrical acoustics solution such that

u = L,_ v = L,_ (A.35)
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then approximate versions of the Helmholtz equation and its boundary condition

are found to be

and

02F

2i__ + _- + (2_+ _2)r = 0

Thus

and

and

2 R
q2 = ;z2 + .5 y 4_u2( 1 +u/R)2 + 2 [Rv(1 +u/2R)-u212]=9 .5

4u2 1 u2 2-'5 +'SR,,
t,J

2 R _1u2 2

] i/2

(A.39)

(A.40)

(A.41)

(A.42)

where it is assumed that (kR) 1Is ::_ 1.

The next step was to derive an outer boundary condition on (A.36) from the

requirement that the solution match the geometrical acoustics solution at points

well above the curved surface. Note that

kx = ku + kuv/R

= ku + (kL=Ly/R)_ (A.38)

= ku + _

Op ikpc

_-_ + --_-p = 0 at 6 = 0 (A.37)
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Hence,the outer boundary condition was posedas a requirement that

where

1/2 / ]= t -_6

= - __(kR),/s_u+Q+ z.

]x/2

(A.43)

(A.44)

3 27

This limit is expected to hold when _ < 0 and _ _ 1.

If (A.43) is reasonable, then fi_ and rio - 6 should be solutions of the eikonal

equation'

( aPhase _ ( OPhase_ _ _2 (A.46)

The phase _9 is obviously a solution to (A.46). To confirm that the other phase

uv - 6 satisfies (A.46), note that

a,# 4__ _a: 2. -a--_= 3 - ]"Q (A.47)

and

c9_ 3
(A.48)

Then, for Phase = _ - 6, one finds that

][ ]22 _-_ + '_- a_7

=-_,_+_ +4_:
= 2_ + _:

(A.40)
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Simplified forms of (A.36-A.37) result when the following notation is intro-

duced. Let

I kR2 ) 1Is pc (A.50)q=i _-

u fi

= R"-'_-- 2_/-'-'_ (A.51)

2v 2_

= R__ 22/_ (A.52)

= (A.53)

and

G = e-'¢'/3F (A.54)

such that G satisfies

•aG 82 G

with the boundary conditions

aG
+qG=O at _/=0 (A.56)

an

and

where

(-2_ + (_ + 3_)*/_ ) */_1+ 3(_2 + 3t/)1/2

. (-2_ + (_" + 3tl)l/" 4" 3iq_ e,e }--2_ + (_2 + 3t/)1/2 3iq/

4 4

(A.57)

Again, the above asymptotic limit is expected to hold when [_l is small and 17 _ 1.
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In order to solve the boundary value problem (A.SS-A.58), one can introduce

a function T(r/, a) and assume a solution for G in terms of a Fourier type transform

of T. That is, write

G(_,r/) =/c e_°¢T(r/'a) da (A.59)

where the contour C is independent of _ and r/. The introduction of this transform

into (A.55) separates the variables and results in the requirement that

d_---Y-T + (_- =)T = 0 (A.60)
drf

which is the Airy differential equation. Two linearly independent solutions to the

Airy differential equation are

_(_- _) =.'/2Ai(_- _)

tul (a - 17) : e'*/e2_rl/2Ai (e'_'/s (a - 17))

(A.61)

where v(z) and tux (z) axe so-called Fock/unctions and Ai(z) is the Airy function of

complex argument. The Airy function is an entire function and can be expressed

as a contour integral of the form

1 /c efl°'13+(a-'7)'l d8Ai(a-_7) = _ ._
(A.02)

where the integration contour Cxi can be any path originating at infinity in the

sector 21r/3 _< arg(s) _< _r and ending at infinity in the sector 0 _< arg(s) _< _r/3.

The boundary condition (A.56) is easily satisfied if one substitutes T(r/, a) =

v(a - 17) + e(a)wl (a - _1) and solves for c(a). The solution is found to be

T = 9(") [_(_- _) v'(o) -- qvCa) (a - 17)] (A.63)w:(_) - qw_(0)_1

such that

G(_,rl, q) = /c e_°¢ g(a) [v(a - _l) - v'(a) - qv(a) (a r/)] dt_ (A.64)_: (0) - q_l (0)_ -
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where it remains to fix the contour C and determine the function g(a). One takes

a clue from (A.57) and tries setting

e-'_'/s_'_. =/o ¢"_gCa)_Ca-_)da (A.6S)

when _ is large and negative. One can substitute (A.61-A.62) for v(a - _) and

obtain

Since

1 /c e"'/se-_"'/ce_'('+¢}g(a)dadsC--iCS/3Cil@ --" _ Ai

one is tentatively led to the choice

(A.66)

(A.67)

1 (A.68)
g(a)=

with C traversing the real axis. Thus, a tentative solution is

0)GCT, ,7,q) = --_ v'(a) -qvCa ) Ca _ r/)] e,. _ (A.69)w'_ (a) -- qwl (a) wl da

What remains is to show that (A.69) has the asymptotic limit specified by

(A.57-A.58). In order to show that such a limit is obtained, the asymptotic limits

of the integrand of (A.69) can be analyzed. Let arg(a) = _b. Then one can write

Ai(a)----_ l[e-2"'"lS+ie2_"ls]27rZ/2 az/4

-2a*/s/3
e

t,
2xl/2al/_

2_r/3 < _b < 4x/3 (A.70)

- 21r/3 < _b < 2x/3 (A.71)
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In fact, Ai(a) changes its behavior as one crosses rays of constant phase situated at

arg(a) = n_r/3 in the complex a plane, where n is any integer. In particular, when

a = lal_'_-/_,

When a "- lale"-/3,

When a = lale'"/3,

When a = lale-"/3,

e-_,_/6 ¢21=1,/,/s (A.72)
AiClale"*l_) --_ 2x,/_lal_/,

Ai(I,_le"'/_) --_
ei,r /6

e_l=l'/'/s (A.73)

e-i'/12 e -'21=1',=13 (A.74)
Ai(lale" /3 ) _ 2_rl/21all/,

Xi(l_l_-"/_)

Finally,when a = lale",

e_'112 e_21°l'/=/s (A.75)

21rl121all/'

Ai(lale") ----+ c°s(21al_/2/3 - N4) CA.76)
xx/21alx/'

Thus, the asymptotic nature of the complex Airy function Ai(a) continuously

changes from a decaying exponential on the positive real axis to an oscillator on

the line _b = x/3, to a growing exponential on the line _b = 2_r/3, and back to an

oscillator on the negative real axis. The behavior in the lower half-plane is a mirror

image of the upper half-plane bacause Xi(_) = Ai(a).

Consider the second term in the integrand of (A.69). The saddle point of this

term is essentially the same as that of

(A.77)

and is most likely on the negative real axis. If one writes B 2 = -a, then the saddle

point is found from

-_ _ • -_ + C_"+ n)"/_ - _" = o (x.r8)
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where the multiplicity of signs is due to the fact that v(a) has two terms in its

asymptotic limit for a real and negative. After the differentiation in (A.78) is

carried out, the equation of the saddle point becomes

-2/3_ _: 2/3_ - 2/3_ + (/3_+ n)1/_9./3= 0 (A.79)

Two distinct forms for/3 can be found depending upon which sign is chosen. These

forms are

2 1 /3_ _ (A.8O)/3=-_4- [_2+3t711/2 or = -r/

The saddle point at/3 = (_2 _ r/)t/_ exists only if _ > 0 and _2 > r/. However,

these conditions correspond to points in the shadow zone. Thus, this saddle point

is ignored. The other two possible saddle points can be checked to see if either is a

proper solution of

which can be rewritten as

(/3_+ n),/, = _ + 9/3 (A.81)

4 _2 3r/)t/2] t/2 1 2+ r/:F: _( + = -_ + (_2 + 3rl)t/2 CX.S2)

When the upper signs are in place, the right side of the equation is always positive;

however, when the lower signs are in place, the right hand side is always negative,

which is a contradiction. Hence, the proper saddle point (denoted by subscript ,_)

is

#,,, = (-a,p)t/, = -_ + (_' + 3_)1/_

(/3_+ _)1/' = -$_ + (_' + 3_)_/'

(A.83)

(A.84)
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Further, the other terms in the argument of (A.78) can be expressed in terms of

8.p with the resultthat

_8_(__8 +_(8 _+rI}s/2 = (s__(_+ ((2+3r/)x/2
Ip

1 s
=-_( +(,7

4 4

which compares correctlywith the exponent in (A.57-A.58).

Near the saddle point,an approximation of the leftsideof (A.85) can be found

from the firsttwo non-trivialterms of itsTaylor seriesexpansion. Let

f(8)= -85_-]8 + (85+ _)s]5 (A.86)

Then

_,fC8.p) -I- f"(8,p)(8 - 8op) 5
2

1 4(_ 5 + 3r])3/2_ s_ _ _ +

( 482"{'2r/ )
1 -2_-88+ (8-8,p)5

(A.87)

_1

[(_ + s_)_ _ [_(_ + _)_]_ - 2,7]
+ [ _2 + 4r/

Thus, if one evaluates (A.69) by the saddle point method, the result is

{ I 1 I liS--gl I e+'/'

)• Be-' ' (P-P")' d8

(A.SS)

where

4 4
(A.s9)
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and

_

2(_ 2 -t- 37) 1/2 [2_ - _(_.2 -I- 37) 1/_ ]

_2 + 4q

Further analysis yields

/: -K2_,Be_,,(D-,s.,)' dE _ -,_.pe -'''/' _ (A.91)

Then, the second term in (A.88) can be rewritten as

_/f2 + 37 -Tq .p (_2 + 7)1/2 [27 - f(f2 + 37)1/2] e'e
CX.o2)

Finally, it can be shown that

_2(f2+ 47) 2 z
= -3f + 3(_2 + 37)1/2 = _,.pC_2 + 7)1/2 [27 - fCf2 + 37)1/2]

(A.93)

Thus, upon comparison with (A.57-A.58), it becomes clear that (A.69) has the

desired asymptotic solution and is the appropriate solution of the boundary value

problem (A.55-A.58).

A.3 A Study of a Definite Integral occurring in the Theory of High Fre-

quency Diffraction by Curved Surfaces -- Field on the Surface

In the previous section, the integral solution

'/" [oioc(_,7,q) = "'(_')-q_(_) (,_-7)],"w_(_)-qw_(_)_1
e da (A.94)

was identified, where

d_ 2
_,,_(_,)= o

d_wlC_)-",_1(_)=0
d_x2

(A.os)

v(a-7) = _l/2Ai(a- 7)

_,(,,- 7)- ,"t'2_11"Ai(:"_(,,- 7))
(A._)
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and

1 [Ai(a) ---* e-
2_x/2a:/4

e-2as/I/s
.-_..,#.

2_xl= azl,

=o*I_Is + ie='_1_Is] 2_r/3 < _b< 4_r/3

- 2_/3< _ < 2_/3

(A.97)

(A.OS)

In the limit of the listener being on the surface r/= 0, one has

a(_,O,q) = _ w_(a)- qw,(a) e''¢ da
(A._)

However, it follows from (A.95) that

Wx v" - vw_ = 0

(w, v' - ,.,w',)'= 0 (A.100)

wz v' -- w'zv = constant

But as lal _ _ for _b= o, one has from (A.96) and (A.97)

1

11 _ _e -2a_/z/3 11_ _ --0_1/2t_

i 2.,/_/s , aZl2wx
ll)1 -.-..+ Ot'_ fDz

(A.101)

and so,

waY' -- tO'zV -" --2a1/2 1
2aI/2

- 1 (A.102)

Hence, when r/= 0

_ia

w'x(c_) - qwx (,',)
da (A.103)

In a 1945 article entitled "The Distribution of Currents Induced by a Plane

Wave on the Surface of a Conductor "2 ,V.A. Fock defines

1 fr tia9(e)= _ , ,,,,(_--_yda (A.104)



where rx is a contour which runs from _e _2"/s _ 0 _ oo, and

1 fr e°t /sw(a)=-_ , e-'" dt

where 1"2 is the mirror image of rx in the complex plane. Now let
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(A.105)

S -" ¢isr/6t

so that

at = iase _2"/3 and - ts/3 = isS/3

Then

where rs is the contour e_6"/6oo --_ 0 --+ e_'/6oo. Thus,

w(a)= 1-_e'"/e2_rAiCae'2"/s)
V_

(A.107)

(A.108)

= _, (_) (A.100)

Further, itiswellknown that the zeros of w_ (a) are on the ray where arg(a) = _r/3,

so the contour rx can be deformed to coincide with the realaxis. Therefore,

G(,_,o,o)= g(,_) (A.110)

where g(_) isthe function derived and tabulated by Fock.

It ispossible to deform the integrationcontour (-oo _ oo) in (A.95) to Fock's

contour rt, which willnow be referredto simply as C. To prove that thisdeforma-

tion isvalid,itishelpfulto introduce the connection formulae for the Airy function

and itsderivative

Ai(t) = e "/3Ai Cte-'2"Is) + e-"/SAi (te '_'/s)

(A.111)

Ai'(t) = e-"/SAi'Cte -'2"Is) + e "/SAi'Cte'2"/s)
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and define a third Fock function w2 as a linear combination of w_ and v such that

w_(t)- wl(t) - 2;vCt)

= 2_rX/2 e'¢l 6 AiCte'2"/, ) - 2/_r x/2 AiCt ) (A.II2)

= 2_rX/2e-i"16Ai(te-12"/s)

which may be compared with

wx (t) = 2_'a/' e'"/, A.i(te '2,,/n) (A.113)

From (A.61) and (A.r0-A.71), it can be shown for Itl large that

1 e2tal_13
w2(t) "'¢ t114

_....¢ _e-i#14 e21,l,l, d,,/, iz
Itll/"

o < _ < 4_/3

where @ = arg(t). Similarly, it can be shown that

(A.114)

ie-'*/" -21'l'/'"'*/'ls 2_r/3 < @ < 27r (A.115)

Hence,

Iw,(Itle'÷)l_ o as Itl_ oo and 7r/3< _b < a" (A.116)

Now, write

1

,(t) = _ [wl(t)- w_Ct)] (A.117)

and substitute for v(a) wherever itoccurs in (A.95). The portion of the integrand

associated with wl/2i drops out identically.Then, one isleftwith

0, w;(a)to,l(a) --qw2(a)_qw,(a) wx Ca - r/)]e''e dot (A.118)



198

In this form, it is clear that the contour can be deformed to C. Thus, it has been

shown that

'k
1

..; (_) _ q...(_)._. - d_

_'C_)-q_C_) C_ n)]e'=_d__; (_)- q_l (_)w' -

(A.119)

Since1_21-" o as I_l-. oofor¢ = 2_/3, andsinceI_1-" 0 as I_1-" oofor¢ = 0,

the first version of (A.119) is more appropriate for the first leg of G', while the

second version of (A.119) is more appropriate for the second leg of C. Therefore,

one can write

i [_C_-_) _ q_(_)_ d_GC_'7'q) = _ ,I

I [ _(_-7)- (_)-q_C_)_,(__7)]_"' d_+ -_ ._ _ (_)-qwl(_)

(A.120)

The integral over leg 1 in CA.120) can be reexpressed by letting a = se '2"Is,

and by noting the following identities

( sei2w /swl ) = _-'"/_,_,(_)
(A.121)

and

(A.122)

w_ (Be 'a'/') - 2e -'s'/a v'(a)

Substitution of these identities leads to another expression for G in the form

1 fo == [v(s-_)- v'(a)-_vCs) (s-6)]e "re dsC(_,7,q) = -_ u,'_(@ - #w=(8) _'_

J1 v(a-7)- t_(a)-qv(s) (s-7) e '°_

(A.123)

where _ = 7e -_2"/s, _ = qe i_'/3, and 5 = 8e _'ls. This form is preferable to (A.95)

because the integrands become vanishingly small for values of _ greater than a _ 8.

On the surface, one can simplify (A.123) by multiplying the numerator and

denominator of the first term of the integrand by the denominator of the second
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term and combining the two terms. Then one can make use of the Wronskian

relations W(v,w_) = W(r, w2) - 1, which were derived above to yield

1 _= e-i'¢12e -°_J'_l_GC{,0, q) - _ w_(s)-ed2"lSqw2C 8)

I fo °° e ''¢ gs+ _ w_ (s) - q_ (s)

d8

(A.124)

A.4 Fock's Method for treating Transition from Light to Shadow in High

Frequency Diffraction by a Curved Surface

This section contains the results of an attempt to apply the analysis in Fock's

1948 paper =Fresnel Diffraction from Convex Bodies" to the approximate evaluation

of

1 /__ [,(a-r/)-G( _, r/, q) = -_
v'Ca)--qv(a) wlCa-r/)]e '°¢da (A.125)

which is similar to an integral obtained by Fock except that Fock's integration

contour, C, is ooe '_'/s --_ 0 _ oo.

It was shown in the previous section that an improved expression for G is

f. [o,c,-,-,,/-
1 _'i. [v(a-r/)-+ _ g2

w_(a) - qw2C a) Ca r/)]e '°¢ da
tu_ Ca) - qwl (a) wl -

v'Ca) - qvCa ) ( a r/)]e '°¢ da
tu_ (t,) qw, (a) tul -

(A.126)

This expression for G can be rearranged by letting

G=_+@ (A.127)

where

(A.128)
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and
i

2_ f,,gl

1/Vq ,2

_;(_) - q_ C_)_ -

_,_{ ¢C_) - q_(_) (_ _)d_.
_C_) - q_ C_)_ -

(x.129)

In the expression (A.128) for ¢, leg 1 can be deformed to the contour (-co --* 0),

and w2 can be replaced by wl - 2iv. Then, a new expression for ¢ is

¢ = Cx + ¢2 (A.130)

where

Cx -- 2s-__ .o ei"ewa (or - r/)da
(A.131)

and

1 _+** tv(a_rl)dct=e__t./3e, t. (A.132)¢2 -" -_ eia

such that ¢2 is related to the incident wave. In order to evaluate ¢1, it is convenient

to express the Fock function wl (a - r/) in the integral form

ei'_/6 /c ei"/ae_(_-")'""1" dswx (¢_ - r/) = -'-_ - .,
(A.133)

where the contour CA, -- (ooe '5"/6 _ 0 --_ ooe ''/6) (previously I's). Consequently,

one has

__ eio ee_o °."'/" da ds (A.134)
¢I = 21r _, **

or

¢1 eiW/6 fc eill/3 elqlt- i'/°= 2--_ i, __se_,w/z ds (A.135)

where the contour C_ is similar to CA, but passes above the pole at s = _e i'/s.

The change of variable z = se _'_/s allows the pole to be moved to the real axis, and

the new expression for ¢1 is

e-is_ /s ei.#

z-_
dz (A.136)



201

where C, runs from ooe _/2, intersects the real axis to the right of the pole z = _,

and then proceeds towards ooe -_,/e. Since the residue of the above integral at

z = _ equals #2, one can deform the contour {7, to a similar contour Cl which,

however, passes to the left of the pole, so that one can write

1 fc e-_'*/se_" dz. (A.137)#=#_+#2=_ , z-(

The above integral can be evaluated by the saddle point technique. The saddle

point occurs at Zop = T71/2. Construct a new contour Co that is similar to both Ct

or C,, except that it cuts the real axis at the saddle point. If r; 1/2 > _, the contour

Co is equivalent to the contour C,, and # reduces to #1. If, however, rf/2 < _, the

contour Co is equivalent to C_. Near the saddle point z = z,p,

_1z3 2 s/2 r/1/2
3 + T/z _ _r/ - (z - z°p) 2 (A.138)

so that

1L2ia" o

and

*L2i_r o

e _}n_/= e-iql/={•-=")

z-_

e iz-81=a, e -_n l/=(=-z'" )s

z-_

dz=#x if Tf/2 >

dz=# if r;1/2 < _.

By changing the variable of integration from z to u = )71/4 (g _ Z.p)ei-/4 and by

deforming the integration contour to the real axis, one can actually perform the

integration with the result that

e -us du

( _ - 17112) - u,-,,, I,_7-11,
= # if 17x/' < _ (A.140)

that same integral being equal to Ox if Tf/2 > _. It follows that

2 e'( f+ 'x"'/') AD (X) for

e{ -'¢*/3+'e") + _2e('f + x."'/')AD (X) for

X>O

X<O
(A.141)
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where Az) (X) is defined by

1/_? e -us dt$

(_/2)x/_X- e-_./,u

The parameter X acts as a dimensionless height in the normalized parabolic coor-

dinate system (_, 7) and is deduced from (A.140-A.142) to be

x- .*,') (A.143)

The properties and asymptotic limits of the diffraction integral Av (X) can be found

elsewhere?

The function • can be reexpressed in the same manner as was (A.116) in the

previous section. Again, let a = sd 2"Is for the leg 1 integral, and since

'_1 ) = (8)W 2

(A.144)

and

w2(. '2"/3)= 2,-"/'_(s)
(A.145)

another expression for • similar to (A.125) can be obtained. The final result is

G = [e-_¢'/sde.H(y) - _e_(Z, + z,.'/')AD(y)]

1

1

w_(,) - qe_,*/,w_(_)

e,.¢v'(s)-qv(8) w,(8-.)_s
_'_(_)- q_,(_)

(A.146)

where H(Y) is the Heaviside step function which is zero for negative values of

Y and unity for positive values of Y. The argument Y -- -X, which represents

a dimensionless height defined from (A.143), is positive in the bright zone and

negative in the shadow zone.
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APPENDIX B

COMPUTATION OF AIRY FUNCTIONS

This appendix contains a summary of an algorithm developed and coded by Pierce

for the calculation of the Airy function and its derivatives for arbitrary complex

argument) This algorithm was applied in the computation of the solutions of

chapter 3.

In general, the Airy function of complex argument may be expressed as the

difference of two functions of the form

(B.1)

where

_, = 3- ,/3/r(2/3) = 0.355028053887817...

_ = 3-_/'/r(1/3) =0.258819403792807...

and where the functions f(z) and g(z) are power series of the form

(B.2)

1 z6 +f(z) = 1 + zS + 6.5.3.2

4__ I z 7 +g(z) = z + z4 + 7.6-4.3

1
Z 9 + .-. (B.3)

9.8-6.5.3.2
1

z '° +.." (B.4)
10"9"7"6"4"3

These series converge absolutely for all complex z. However, significant errors in

the numerical results can arise for Izl > 3.
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For very large Izl, an asymptotic series may be used to represent Ai(z). How-

ever, the series does not converge absolutely because the terms in the series even-

tually reach a minimum but then rise without limit thereafter. If one keeps all of

the terms up to and including the minimum, then the error is on the order of the

first excluded term. As a result of this behavior of the asymptotic series, another

approach is needed for intermediate values of Izl.

In order to derive this approach, the Airy function is expressed as a contour

integral of the form

1 Iv e'["/3+*']ds (B.5)Ai(z)= .,

manipulation, as

Ai(z) = le-(2/3)"_" f :2r

2l

2uzl/2 -- iu2
e dl (B.6)

Of the possible solutions of the cubic equation for u(ell), only one fits the require-

ments that u(0) = 0, that u(l) be continuous, and that the contour deformation

onto the real l axis of the mapping of C^l be admissable. For small l, the solution

is easily seen as u(l) = l/z x/4. Thus, it is appropriate to write

Kl
u - (B.7)

zX/4

Then, with further algebra, the Airy function can be expressed as

(2/3), _/'
[1 + FM (l,Ai( ) = L (B.8)

where Cxi is a contour in the complex s-plane going from ooe _s'/6 to the origin

and from the origin to ooe _'/6. With the help of the connection formulae of the

Airy function, this contour can always be deformed to pass through a saddle point

along a path of steepest ascent to the saddle point and then along a path of steepest

descent away from the saddle point. Letting s = iz 1/2 + u and changing variables

by letting t 2 = zl/2u 2 - (i/3)u s, the Airy function may be rewritten, after further



where

and

2O5

-2ilz - s/' -- 1 - e_2"C/S A 2 - e-_2" /S A - 2

F,_ (l,z _/') = e'_'/_ A _ + e-'_'/_A -_ + I (B.9)

312 "112 ::F 3x/"t]'/sI"
A_== L(1+ 4--_ J 2_-_J (B.10)

The integrand in the new expression for Ai(z) is no longer oscillatory and, thus,

the integral has better convergence properties. An Hermits integration scheme was

used to calculate the numerical value of the integral. A similar approach can be

applied to solve for the derivative of the Airy function when [z I is moderate.
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APPENDIX C

GEOMETRIC ACOUSTICS SOLUTION

FOR A POINT SOURCE

RADIATING OVER A CURVED SURFACE

The geometric acoustics solution derived here for a point source radiating over a

curved surface of finiteimpedance followsthe same approach as that used to derive

the geometric acoustics solution for a plane incident wave. The two solutions are

similar as they should be; in fact, the point source should yield the plane wave

solution when the source position ismoved to infinity.The point source solution is

not presented in as neat and compact a form as was done for the plane wave solution

in chapter 3 and appendix A. However, the goal here was to simply formulate a

point source solution that contained the important approximations used to derive

the plane wave solution. No attempt was made to present the solution in a form

suitable for use as an asymptotic limit,as was done in the plane wave case.

Consider two rays which are incident upon a curved surface and which reflect

according to the law of mirrors (Fig.C.1). Again, let R be the radius of curvature

of the surface at the reflectionpoint (Zo,Y0). @0 is the angle between the firstleg

of the reflectedray and the lineof sight. Let the position of the point source be



207

Direct

r
1 (x,y)

(×.,o) D,
Reflected

r
o

Figure C.I Geometric descriptionofthe acoustic fielddue to a point source

in the vicinityof a curved surface. The reflectionoccurs according to

the law of mirrors. Although the incident wave is spherical (or cylin-

drical),the effectsat the point of reflectionare described by the plane

wave reflectioncoei_cient.However, the spreading of adjacent rays after

reflectiondoes include the effectdue to the fact that the rays axe not

parallelwhen incident.
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designated by the coordinates (x,, 0). Then, the second leg of the reflected ray path

is given by
z = Zo +/cos(z" - 20_ - ¢o)

(c._)
Y = Yo + lsin(_r -- 20, -- ¢o)

where l is the length of the second leg.

If the source strength is designated by S, then the acoustic field complex am-

plitude in the geometric acoustics approximation is

where • is the reflection coefficient, r, is the length of the direct path between the

source at (x,, O) and the listener at (x, y), and A(l) is the so-called ray tube area

associated with a small bundle of adjacent reflected rays. In two-dimensions, A(l)

is the spreading of two adjacent reflected rays after propagation a distance l from

the surface. If one considers the geometry associated with the reflection of two rays

which strike the surface a distance As apart, then one can show that

A(0) _ R_otosS, (C.3)
- R_ cos8, + 2rol(Rcos8,+ ro)+ g2(Rcos8,+ 2ro)

where 8_ is the angle of incidence normal to the surface. When ro --* oo, this

expression reduces to that given in Appendix A for an incident plane wave. The

reflection coefficient _ is that for plane wave reflection at a locally reacting surface

such that

= Z. cos8, - pc (C.4)
Zo cos 8_ + pc

where Z, is the surface impedance, and pc is the characteristic impedance of the

surrounding fluid medium.
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The preceding analysis is valid for any surface in the geometrical acoustics

limit.Of particularinteresthere isthe form of of the solution in the vicinityof the

top of a curved surface. As in appendix A, neat the top one can write

Zo = -R sin Oo

9o -- -R(1 - cos00) (C.5)

0,= x/2 - 0o- Co

where 0o and ¢o axe small and z, y, and l axe allmuch lessthan R. Upon substi-

tution of (C.5) into (C.0),one finds to "leading order",

z _ -ROo + l

(C.6)

y= -R0o_/2+ I(20o+ Co)

or, afterelimination of l

3(R0o)2 + (RCo + 2x)(RSo) + RCox- Ry = 0 (C.7)
2

As before, the quadratic equation in R0o can be solved so that as x --* 0- and

y _ 0 + , one has R0o > -z, as required by the geometry. The solution is

ROo = -(RCo + 2x) + [(2x + RCo) 2 -SR(CoX- y)],/2 (C.8)
3

-(RCo + 2x)-= + O(Co) (c.9)
3

where the result of the square root is considered positive. When ro --* oo, then

Co --* 0 and the above result again reduces to that found for the case of a plane

wave. Substitution of (C.9) into (C.6) yields

l- (x- RCo)+ Q(Co) (c.10)
3

An expression for ro can also be found in terms of ROo and RCo, but the algebra is

messy. However, the expression for ro does reduce to Xo when ¢o --* 0, as it should.

The other terms in (C.2) axe also functions of R0o and RCo. Again, they axe not
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written here, but when _0 --* O, they all reduce to their corresponding version in

the plane wave solution.

What remains is to express R_o in terms of ROo, or vice versa, so that the

solution can be computed. A suitable expression is found from the geometry shown

in the figure. The law of sines gives

sin(_b + _bo) sin20_ sin(20o + 2_bo)= __ = (c.lz)
rl rl

where _b is the angle between the direct ray and the line of sight. When 0o and _bo

are small enough, then sin(20o + 2_bo) _ 2sin(0o + _o), and so

sin(_b+ @o) 2 sin(8o+ _bo) (c.12)
l rz

Further, when the listener is not too far above the curved surface, so that @ is also

small, then

___b-i-_bo _ 2(00 -{-_bo) (C.13)
l r_

Further algebra yields

R_b0_ 2xR00+ 2R_02o- rlR_b (C.14)
,_- 2(x- R0o)

This expression along with (C.8) can be solved iteratively. Experience indicates

that a small initial guess for either of 00 or _bo will quickly lead to a solution. When

the height of the listener above the curved surface is not small compared to R, the

above approximate formula for @o in terms of 80 should be used with caution. In

those cases, one can simply use the law of sines relation directly. Of course, the

validity of the entire solution is questionable at too large listener heights, so the

above approximate formula may suffice.



211

ENDNOTES

1. PIERCE, A.D., Aco_tics: An Introduction to Its Physical Principles and Ap-

plications, McGraw-Hill Book Co., New York, pg. 469, (1981).

2. HUNT, F.V., Origins in Acoustics, Yale University Press, New Haven, Con-

necticut, pg. 131 (1978).

3. NEWTON, I., Opticks: A Treatise of the Reflections, Refractions, Inflections,

8 Colours of Light, Fourth Ed. (corrected by Author's own hand), W. Innys,

London. (Reprint of the Fourth Ed. by G. Bell & Son Ltd. , London, 1931.)

Queries 1-5 (1730).

4. NEWTON, I., Opticks: A Treatise of the Reflections, Refractions, Inflections,

Colours of Light, Fourth Ed. (corrected by Author's own hand), W. Innys,

London. (Reprint of the Fourth Ed. by G. Bell & Son Ltd. , London, 1931.)

Query 28 (1730).

5. HUNT, F.V., Origins in Acoustics, Yale University Press, New Haven, Con-

necticut, pg. 133 (1978).

6. BOWMAN, J.J., T.B.A. SENIOR, and P.L.E. USLENGHI, Electromagnetic

and Acoustic Scattering by Simple Shapes, North-Holland Publishing Co., Am-

sterdam, pg. 21 (1969).

7. FOCK (FOK), V.A., Electromagnetic Diffraction and Propagation Problems,

Pergamon Press, New York, pg. 90 (1965).

8. FOCK (FOK), V.A., Electromagnetic Diffraction and Propagation Problems,

Pergamon Press, New York, pg. viii, 171 (1965).

9. FOCK (FOK), V.A., Electromagnetic Diffraction and Propagation Problems,

Pergamon Press, New York, pg. 102 (1965).

10. KELLER, J.B., Diffraction by a Convex Cylinder, IRE Trans. Ant. Prop. AP-

4, pg. 312 (1956).



212

11. KELLER, J.B., Geometrical Theory of Diffraction, J. Opt. Soc. Am. 52, pg.

116 (1962).

12. PIERCE, A.D., The Diffraction of Sound over a Curved Surface. Private

Comm., (1985 ).

13. American Heritage Dictionary, William Morris ed., Houghton Mifflin Co., Bos-

ton, pg. 971, (1976).

14. PIERCE, A.D. and G.L. MAIN, Computational Algorithms for the Matched

Asymptotic Expansion solution of High Frequency Acoustic Wave Diffraction

by Curved Surfaces of Finite Impedance, in Advances in Computer Methods

for Partial Differential Equations • VI, R. Vichnevetsky and R.S. Stepleman

eds., Inter. Assoc. for Math. and Comp. in Sire. (IMACS), New Brunswick,

New Jersey, (1987).

15. PIERCE, A.D., Acoustics: An Introduction to Its Physical Principles and Ap-

plications, McGraw-Hill Book Co., New York, pg. 237, (1981).

16. ABRAMOWITZ, M. and I. STEGUN, Handbook of Mathematical Functions,

Dover, New York, pg. 302, (1965).

17. PIERCE, A.D., Acoustics: An Introduction to Its Physical Principles and Ap-

plications, McGraw-Hill Book Co., New York, pg. 495, (1981).

18. PIERCE, A.D. and G.L. MAIN, Computational Algorithms for the Matched

Asymptotic Expansion solution of High Frequency Acoustic Wave Diffraction

by Curved Surfaces of Finite Impedance, in Advances in Computer Methods

for Partial Differential Equations • VI, R. Vichnevetsky and R.S. Stepleman

eds., Inter. Assoc. for Math. and Comp. in Sire. (I_[ACS), New Brunswick,

New Jersey, (1987).

19. ABRAMOWITZ, M. and I. STEGUN [1965], Handbook of Mathematical Func-

tions, Dover, New York, pg. 450, 478, (1965).

20. ALMGREN, M., Scale model simulation of sound propagation considering

sound speed gradients and acoustic boundary layers at a rigid surface, Re-

port FSf>-05, Chalmers University of Technology, GSteborg, Sweden, App. 3,

pg. 57, (1986).

21. PIERCE, A.D., Acoustics: An Introduction to Its Physical Principles and Ap-

plications, McGraw-Hill Book Co., New York, pg. 165, (1981).



213

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

WRIGHT, W.M., Propagation in Air of N Waves Produced by Sparks, ,i.
Acoust. Soc. Am. 73 (6), pg. 1948-1955, (1983).

WRIGHT, W.M. and J.L. McKITTRICK, Diffraction of Spark-produced

Acoustic Impulses, Am. ,i. Phys. 35, pg. 124-128, (1967).

PIERCE, A.D., Acoustics: An Introduction to Its Physical Principles and Ap-

plication_, McGraw-Hill Book Co., New York, pg. 566-571, (1981).

PIERCE, A.D., Acoustics: An Introduction to Its Physical Principles and Ap-

plications, McGraw-Hill Book Co., New York, pg. 604, (1981).

MORSE, P.M., Sound and Vibration, American Institute of Physics, pg. 366,

(1976).

MORSE, P.M., Sound and Vibration, American Institute of Physics, pg. 368,

(1976).

RUDNICK, I., The Propagation of an Acoustic Wave along a Boundary, J.

Acoust. Soc. Am. 19, 348-356, (1947).

CHIEN, C.F. and W.W. SOROKA, Sound Propagation Along an Impedance

Boundary, ,i. Sound Vib. 43, 9-20, (1975).

EMBLETON, T.F.W., ,I.E. PIERCY and G.A., Effective Flow Resistivity of
Ground Surfaces determined by Acoustical Measurements, J. Acoust. Soc. Am.

_'4 (4), 1239-1244, (1983).

DELANY, M.E. and E.N. BAZLEY, Acoustical Properties of Fibrous Ab-
sorbent Materials, Appl. Acoust. 3, 105-116, (1970).

KINSLER, L.E. and A.R. FREY, Fundamentals of Acoustics, Second Ed., John

Wiley & Sons, Inc., pg. 134, (1962).

CHESSELL, C.I., Propagation of Noise along a Finite Impedance Boundary,

,i. Acoust. Soc. Am. 62, 825-834, (1977).

ATTENBOROUGH, K., Acoustical Impedance Models for Outdoor Ground

Surfaces, J. Sound Vib. 99(4), pg. 521-544, (1985).

DONATO, R.J., Impedance Models for Grass-Covered Ground, ,i. Acoust.

Soc. Am. 61 (6), pg. 1449-1452, (1976).

PIERCE, A.D. and G.L. MAIN, Computational Algorithms for the Matched

Asymptotic Expansion solution of High Frequency Acoustic Wave Diffraction

by Curved Surfaces of Finite Impedance, in Advances in Computer Methods

for Partial DifferentialEquations • VI, R. Vichnevetsky and R.S. Stepleman

eds., Inter.Assoc. for Math. and Comp. in Sire. (IMACS), New Brunswick,

New Jersey, (1987).



214

BIBLIOGRAPHY

ABRAMOWITZ, M. and I. STEGUN [1965], Handbook of Mathematical Functions,

Dover Publications, New York.

AIRY, G.B. [1838], On the Intensity of Light in the Neighborhood of a Caustic,

Trans. Cambridge Phil. Soc. 6, 379-402.

ALLARD, J.F. and B. SIEBEN [1984], Measurements of Acoustic Impedance in

a Free Field with Two Microphones and a Spectrum Analyzer, J. Acoust.

Soc. Am. 77, 1617-1618.

ALLARD, J.F., R. BOURDIER and A.M. BRUNEAU [1985], The Measurement

of Acoustic Impedance at Oblique Incidence with Two Microphones, J. Sound

Vib. 101, 130-132.

ALMGREN, M. [1986], Scale model simulation of sound propagation considering

sound speed gradients and acoustic boundary layers at a rigid surface, Report

F86-05, Chalmers University of Technology, GSteborg, Sweden.

AMBAUD, P. and A. BERGASSOLI [1972], Le probl_me du dJ_dre en acoustique

(The problem of the wedge in acoustics), Acustica 27, 291-298.

ANSI STANDARD of the ACOUSTICAL SOCIETY of AMERICA [1978], Method

for the Calculation of the Absorption of Sound by the Atmosphere, American

Institute of Physics, ANSI S1.26-1978.

ATTENBOROUGH, K. [1982], Predicted Ground effect for Highway Noise,

J. Sound Vib. 81(3), 413-424.

ATTENBOROUGH, K. [1985], Acoustical Impedance Models for Outdoor Ground

Surfaces, J. Sound Vib. 99(4), 521-544.

ATTENBOROUGH, K. and O. BUSER [1988[, On the Application of Rigid-Porous

Models to Impedance Data for Snow, J. Sound Vib. 124 (2), 315-327.



215

BECHTEL, M.E. [1965], Application of Geometric Diffraction Theory to Scattering

from Cones and Disks, Proc. IEEE 53, 877-882.

BERANEK, L.L. [1940], Precision Measurement of Acoustic Impedance, J. Acoust.

Soc. Am. 12, 3-13.

BERANEK, L.L. [1940], Acoustic Impedance of Commercial Materials and the Per-

formance of Rectangular Rooms with One Treated Surface, J. Acoust. Soc. Am.

12, 14-23.

BERRY, A. and G.A. DAIGLE [1987], Propagation of Sound above a Curved Sur-

face, Text of paper PP8 presented at the conference of the Acoustical Society

of America, May 1987.

BLAKE, W.K. and G.A. WILSON [1977], Short-Wavelength Diffracted Surface

Pressures on a Rigid Prolate Spheroid, J. Acoust. Soc. Am. 61, 1419-1426.

BOLEN, L.N. and H.E. BASS [1981], Effects of Ground Cover on the Propagation

of Sound through the Atmosphere, J. Acoust. Soc. Am. 69, 950-954.

BOROVIKOV, V.A. and B.Y. KINBER I1974],Some Problems in the Asymptotic

Theory of Diffraction,Proc. IEEE, 1416-1437.

BOWMAN, J.J., T.B.A. SENIOR, and P.L.E. USLENGHI [1969], Electromagnetic

and Acoustic Scattering by Simple Shapes, North-Holland Publishing Co., Am-

sterdam.

BRAUNBEK, W. [1959], Diffraction of an Electromagnetic Plane Wave by a Funnel-

Shaped Screen, IRE Trans. Ant. Prop. AP-7, $71-$77.

BREKHOVSKIKH, L.M. [1980], Waves in Layered Media, Second Ed., Academic

Press, New York.

BREKHOVSKIKH, L.M. [1959], Surface Waves in Acoustics, Soy. Phys. Acoust. 5,

3-12.

CHAMBERLIN, K.A. and R.J. LUEBBERS [1982], An Evaluation of Longley-Rice

and GTD Propagation Models, IEEE Trans. Ant. Prop. AP-30, 1093-1098.

CHESSELL, C.I. [1977],Propagation of Noise along a Finite Impedance Boundary,

J. Acoust. Soc. Am. 62,825-834.

CHIEN, C.F. and W.W. SOROKA [1975], Sound Propagation Along an Impedance

Boundary, J. Sound Vib. 43, 9-20.



216

COLE, J.E. III and J.M. GARRELICK [1980], Diffraction of Sound by an Impe-

dance Paraboloid, J. Acoust. Soc. Am. 68, 1193-1198.

COLE, J.E. III and J.M. GARRELICK [1981], Reply to Comments by Filippi and

Habault, J. Acoust. Soc. Am. 70, 1789.

COLE, J.E. [1987], Diffraction of Sound by a Refracting Cylindrical Barrier, J.

Acoust. Soc. Am. 81, 222-225.

CRAMOND, A.J. and C.G. DON [1984], Reflection of Impulses as a Method of

Determining Acoustic Impedance, J. Acoust. Soc. Am. 75, 382-389.

CULLEN, J.A. [1958], Surface Currents Induced by Short-Wavelength Radiation,

Phys. Rev. 109, 1863-1867.

DAIGLE, G.A. and M.R. STINSON [1987], Impedance of Grass-Covered Ground

at Low Frequencies measured using a Phase Difference Technique, J. Acoust.

Soc. Am. 81, 62-68.

DAVIES, J.C. and K.A. MULHOLLAND [1979], An Impulse Method of Measuring

Normal Impedance at Oblique Incidence, J. Sound Vib. 67, 135-149.

DE BRUIJN, N.G. [1958] Asymptotic Methods in Analysis, Dover Publications, Inc.,

New York.

DELANY, M.E. and E.N. BAZLEY [1970], Acoustical Properties of Fibrous Ab-

sorbent Materials, Appl. Acoust. 3, 105-116.

DELANY, M.E. and E.N. BAZLEY [1970], Monopole Radiation in the Presence of

an Absorbing Plane, J. Sound Vib. 13, 269-279.

DE JONG, B.A., A. MOERKERKEN and J.D. VAN DER TOORN [1983], Propa-

gation of Sound over Grassland and over an Earth Barrier, J. Sound Vib. 86,

23-46.

DONATO, R.J. [1976], Propagation of a Spherical Wave near a Plane Boundary

with a Complex Impedance, J. Acoust. Soc. Am. 60 (1), 34-39.

DONATO, R.J. [1976], Impedance Models for Grass-Covered Ground, J. Acoust.

Soc. Am. 61 (6), 1449-1452.

EMBLETON, T.F.W., J.E. PIERCY and G.A. DAIGLE [1983], Effective Flow

Resistivity of Ground Surfaces determined by Acoustical Measurements,

J. Acoust. Soc. Am. 74 (4), 1239-1244.



217

EMBLETON, T.F.W., J.E. PIERCY and N. OLSON [1976], Outdoor Sound Prop-

agation Over Ground of Finite Impedance, J. Acoust. Soc. Am. 59, 267-277.

ERD_LYI, A., W. MAGNUS, F. OBERHETTINGER and F.G. TRICOMI [1953],

Higher Transcendental Functions, Volumes I, II, TTI, McGraw-Hill Book Co.,

Inc., New York.

EVANS, L.B., H.E. BASS and L.C. SUTHERLAND [1971], Atmospheric Absorp-

tion of Sound: Theoretical Predictions, J. Acoust. Soc. Am. 51, 1565-1575.

FOCK (FOK), V.A. [1945], Diffraction of Radio Waves around the Earth's Surface,

J. Phys. USSR 9, 255-266.

FOCK (FOK), V.A. [1946a], The Distribution of Currents induced by a Plane Wave

on the Surface of a Conductor, J. Phys. USSR 10, 130-136.

FOCK (FOK), V.A. [1946b], The Field of a Plane Wave near the Surface of a

Conducting Body, J. Phys. USSR 10, 399-409.

FOCK (FOK), V.A. [1948],Fresnel'sReflection Laws and DiffractionLaws, Prog.

Phys. Sci.(Uspekhi), 36, 308 (in Russian).

FOCK (FOK), V.A. [1950],Fresnel Diffractionfrom Convex Bodies, Prog. Phys.

Sci. (Uspekhi), 43,587 (in Russian).

FOCK (FOK), V.A. [1965], Electromagnetic Diffraction and Propagation Problems,

Pergamon Press, New York.

FRANZ, W. [1954], Uber die Greenschen Funktionen des Zylinders und der Kugel,

Z. Naturforsch. 9a, 705-716.

FRANZ, W. and K. DEPPERMAN [1952], Theorie der Beugung am Zylinder unter

Berucksichtigung der Kriechwelle, Ann. Physik 10, 361-373.

FRANZ, W. and K. KLANTE [1959], Diffraction by Surfaces of Variable Curvature,

IRE Trans. Ant. Prop. AP-7, $68-$70.

FRESNEL, A.J. [1821-22],Sur la diffractionde lalumi_re, (read to the Academy 29

July 1818) Mdmoires de l'Acaddmie Royale des Sciences de l'Institutde France

5,339-475 (also (Euvres, Vol. I [lS66]).

GOODRICH, R.F. [1959], Fock Theory u An Appraisal and Exposition, IRE Trans.

Ant. Prop. AP-7, $28-$36.



218

GOODRICH, R.F. and N.D. KAZARINOFF [1963],Scalar Diffractionby Prolate

Spheroids whose Eccentricitiesare almost One, Proc. Cambridge Phil.Soc. 59,

167-183.

HAYEK, S.I.,J.M. LAWTHER, R.P. KENDIG, and K.T. SIMOWITZ [1978],In-

vestigationof Selected Noise Parameters of Acoustical Barriers,report to NAS-

NRC Transportation Research Board.

HIRSCH, M.W. and S. SMALE [1979],On Algorithms for Solving/(z) - 0, Comm.

Pure App. Math. 32, 281-312.

HONG, S. [1967],Asymptotic Theory of Electromagnetic and Acoustic Diffraction

by Smooth Convex Surfaces of Variable Curvature, J. Math. Phys. 8, 1223-

1232.

HONG, S. and R.F. GOODRICH [1965],Application of Conformal Mapping to

Scattering and DiffractionProblems, in: Electromagnetic Wave Theory, ed. J.

Brown, 907-914, Pergamon Press,London (1967).

HONG, S. and V.H. WESTON [1966],A Modified Fock Function for the Distri-

bution of Currents in the Penumbra Region with Discontinuity in Curvature,

Radio Science 1, 1045-1053.

HUNT, F.V. [1978],Origins in Acoustics,Yale University Press, New Haven, Con-

necticut.

INGARD, U. [1951],On the Reflectionof a Spherical Sound Wave from an Infinite

Plane, J. Acoust. Soc. Am. 28, 329--335.

IVANOV, V.I. [197i], Uniform Asymptotic Behavior of the Field produced by Plane

Wave Reflection at a Convex Cylinder, USSR Comput. Math. Math. Phys. 2,

216-232.

JAMES, G.L. [1980],GTD Solution for Diffractionby Convex Corrugated Surfaces,

IEE Proceedings 127, 257-262.

JAMES, G.L. [19861, Geometrical Theorlt of Diffraction for Electromagnetic Waves,

Third Ed. revised,Peter Peregrinus Ltd., London.

JONASSON, H.G. [1972],Sound Reduction by Barriers on the Ground, J. Sound

Vib. 22, 113-126.

JONASSON, H.G. [1972], Diffraction by Wedges of Finite Acoustic Impedance with

Applications to Depressed Roads, J. Sound Vib. 25,577-585.



219

JONES, H.W. and D.C. STREDULINSKY [1977], Measurement of Surface Acous-

tic Impedances at Oblique Angles of Incidence and Ultrasonic Frequencies,

J. Acoust. Soc. Am. 61, 1089-1091.

KAY, I. and J.B. KELLER [1954], Asymptotic Evaluation of the Field at a Caustic,

J. Appl. Phys. 25, 876-883.

KAZARINOFF, N.D. and R.K. RITT [1959], Scalar Diffraction by an Elliptic Cylin-

der, IRE Trans. Ant. Prop. AP-7, $21-$27.

KELLER, J.B. [1953], The Geometric Optics Theory of Diffraction, presented at

McGill Symposium on Microwave Optics. Air Force Cambridge Research Cen-

ter Report No. TR-59-118 (H) 1959.

KELLER, J.B. [1956], Diffraction by a Convex Cylinder, IRE Trans. Ant. Prop.

AP-4, 312-321.

KELLER, J.B. [1958], A Geometrical Theory of Diffraction, in: Calculus of Varia-

tions and its Applications, Proc. Syrup. on Appl. Math. 8, 27-52, McGraw-Hill

Book Co., Inc., New York.

KELLER, J.B. [1960], Backscattering from a Finite Cone, IRE Trans. Ant. Prop.

AP-8, 175-182.

KELLER, J.B. [1961], Backscattering from a Finite Cone---Comparison of Theory

and Experiment, IRE Trans. Ant. Prop. AP-9, 411-412.

KELLER, J.B. [1962], Geometrical Theory of Diffraction, J. Opt. Soc. Am. 52,

116-130.

KELLER, J.B. [1985], One Hundred Years of Diffraction Theory, IEEE Trans. Ant.

Prop. AP-33 (2), 123-125.

KELLER, J.B., R.M. LEWIS and B.D. SECKLER [1956], Asymptotic Solution of

some Diffraction Problems, Comm. Pure Appl. Math. 9, 207-265.

KING, R.J. and G.A. SCHLAK [1967], Groundwave Attenuation Function for Prop-

agation Over a Highly Inductive Earth, Radio Science 2,687-693.

KINNEY, W.A., C.S. CLAY and G.A. SANDNESS [1983], Scattering from a Corru-

gated Surface: Comparison between Experiment, Helmholtz-Kirchhoff theory,

and the Facet-Ensemble Method, J. Acoust. Soc. Am. 73, 183-194.



220

KINSLER, L.E. and A.R. FREY [1962], Fundamentals of Acoustics, Second Ed.,

John Wiley & Sons, Inc., New York.

KLINE, M. [1962], Electromagnetic Theory and Geometrical Optics, Electromag-

netic Waves, ed. R.E. Langer, University of Wisconsin Press, Madison, Wis-
consin.

KOUYOUMJIAN, R.G. [1965], Asymptotic High-Frequency Methods, Proc. IEEE

53, 864-876.

KOUYOUMJIAN, R.G. [1975], The Geometrical Theory of Diffraction and Its

Applications, in: Numerical and Asymptotic Techniques in Electromagnetics,

Chpt. 6, ed. R. Mittra, Springer, New York.

KOUYOUMJIAN, R.G. and P.H. PATHAK [1974],A Uniform Geometrical Theory

of Diffractionfor an Edge in a Perfectly Conducting Surface, Proc. IEEE 62,

1448-1461.

KURZE, U.J. [1974], Noise Reduction by Barriers, J. Acoust. Soc. Am. 55,504-518.

LANG, M.S. [1980], An Experimental Analysis of the Basic Phenomena involved in

Modern Diffraction Theories, a Ph.D. thesis at the Applied Research Labora-

tory, Pennsylvania State University, report no. TM 80-43.

LANGER, R.E. [1931], On the Asymptotic Solutions of Ordinary Differential Equa-

tions, Trans. Am. Math. Soc. 33, 23-64.

LANGER, R.E. [1932], On the Asymptotic Solutions of Ordinary Differential Equa-

tions, Trans. Am. Math. Soc. 34, 447-480.

LANGER, R.E. [1962], Electromagnetic Waves, University of Wisconsin Press,

Madison, Wisconsin.

LAWHEAD, R.B. and I. RUDNICK [1951], Acoustic Wave Propagation Along a

Constant Normal Impedance Boundary, J. Acoust. Soc. Am. 23, 546-549.

LAX, M. and H. FESHBACH [1948], Absorption and Scattering for Impedance

Boundary Conditions on Spheres and Circular Cylinders, J. Acoust. Soc. Am.

20, 108-124.

LEE, S.W., Y. RAHMAT-SAMII and R.C. MENENDEZ [1978], GTD, Ray Field,

and Comments on Two Papers, IEEE Trans. Ant. Prop. AP-26 (2), 352-354.



221

LEGOUIS, T. and J. NICOLAS [1987], Phase Gradient Method of Measuring the

Acoustic Impedance of Materials, J. Acoust. Soc. Am. 81, 44-50.

LEGUSHA, F.F. [1984] The Koustantinov Effect and Sound Absorption in Inho-

mogeneous Media, J. Phys. Usp. (USSR) 27 (II), 887-895.

LEONTOVICH, M.A. and V.A. FOCK (FOK) [1946], Solution of the Problem

of Propagation of Electromagnetic Waves along the Earth's Surface by the

Method of Parabolic Equation, J. Phys. USSR lO, 13.

LESSER, M.B. and D.G. CRIGHTON [1975], Physical Acoustics and the Method

of Matched Asymptotic Expansions, in: Physical Acoustics, ed. W.P. Mason

and R.N. Thurston, Vol. 11, Academic Press, New York.

LEVY, B.R. and J.B. KELLER [1959], Diffraction by a Smooth Object, Comm.

Pure Appl. Math. 12, 159-209.

LEWIS, R.M. and J.B. KELLER [1964], Asymptotic Methods for Partial Differ-

ential Equations: The Reduced Wave Equation and Maxwell's Equations, Re-

search Report No. EM-194, New York University.

LEWIS, R.M., N. BLEISTEIN and D. LUDWIG [1967], Uniform Asymptotic The-

ory of Creeping Waves, Comm. Pure Appl. Math. 20, 295-328.

LINDSAY, R.B. (ed.) [1972], Acoustics: Historic_d and Philosophical Development,

Dowden, Hutchinson & Ross, Inc., Stroudsburg, Pennsylvania.

LOGAN, N.A. [1959], General Research in Diffraction Theory, Vols. 1 and 2, Lock-

heed Missiles Space Div. Rpt. Nos. LMSD-288087 and LMSD-288088, NTIS

accession Nos. AD 241228 and AD 243182.

LOGAN, N.A. and K.S. YEE [1962], A Mathematical Model for Diffraction by

Convex Surfaces, in: Electromagnetic Waves, ed. R.E. Langer, 139-180, The

University of Wisconsin Press, Madison, Wisconsin.

LUDWIG, D. [1966], Uniform Asymptotic Expansions at a Caustic, Comm. Pure

Appl. Math. 19, 215-250.

LUDWIG, D. [1967], Uniform Asymptotic Expansions of the Field Scattered by a

Convex Object at High Frequencies, Comm. Pure Appl. Math. 20, 103-138.

LUEBBERS, R.J. [1984], Propagation Prediction for Hilly Terrain using GTD

Wedge Diffraction, IEEE Trans. Ant. Prop. AP-32 (9), 951-955.



222

LUEBBERS, R.J. [1984],Finite Conductivity Uniform GTD versusKnife-edgeDif-
fraction in Prediction of Propagation Path Loss, IEEE Trans. Ant. Prop. AP-

s2 (1),70- 6

LUNEBURG, R.K. [1944], The Mathematical Theory of Optics, Brown University

Press, Providence, Rhode Island.

MAEKAWA, Z. [1968],Noise Reduction by Screens, Appl. Acoust. I, 157-173.

MATHEW, J. and R.J. ALFREDSON [1981], The Reflection of Acoustical Tran-

sients from Fibrous Absorptive Surfaces, J. Sound Vib. 75, 459-473.

MATHEW, J.and R.J. ALFREDSON [1982],An Improved Model for Predicting the

Reflectionof Acoustical Transients from Fibrous Absorptive Surfaces,J. Sound

Vib. 84, 296-300.

MEDWIN, H. [1981],Shadowing by FiniteNoise Barriers,J. Acoust. Soc. Am. 69,

1060-1064.

MEEKS, M.L. [1983], VHF Propagation over Hilly, Forested Terrain, IEEE Trans.

Ant. Prop. AP-31 (3), 483--489.

MITTRA, R. and S. SAFAVLNAINI [1979],Source Radiation in the presence of

Smooth Convex Bodies, Radio Science 14, 217-237.

MORSE, P.M. [1976],Sound and Vibration,American Instituteof Physics.

NEUBAUER, W.G. [1968],Experimental Measurement of _Creeping _ Waves on

Solid Aluminum Cylinders in Water using Pulses, J. Acoust. Soc. Am. 44,

298-299.

NEWTON, ISAAC [1730],Opticks: A Treatiseof the Reflections,Refractions, In-

flections,8 Colours of Light,Fourth Ed. (corrected by Author's own hand),

W. Innys, London. (Reprint of the Fourth Ed. by G. Bell & Son Ltd., London,

1931.)

NICHOLSON, J.W. [1910],On the Bending of Light Waves Round a Large Sphere,

I,Phil.Mag. 19, 516-537.

NICOLAS, J.,T.F.W. EMBLETON and J.E. PIERCY [19831,Precise Model Mea-

surements versus Theoretical Prediction of Barrier Insertion Loss in Presence

of the Ground, J. Acoust. Soc. Am. 73, 44-54.



223

NICOLAS, J., T.F.W. EMBLETON and J.E. PIERCY [1983], Author's reply to

Comments on 'Precise Model Measurements versus Theoretical Prediction of

Barrier Insertion Loss in Presence of the Ground' _, J. Acoust. So<:. Am. 74,

1300-1301.

OBERHETTINGER, F. [1961], On Transient Solutions of the _Ba_ed Piston _

Problem, J. Res. NBS 65B, 1-6.

OLVER, F.W.J. [1954], The Asymptotic Expansion of Bessel Functions of Large

Order, Phil. Trans. Roy. Soc. A247, 328-368.

PATHAK, P.H. [1979], An Asymptotic Analysis of the Scattering of" Plane Waves

by a Smooth Convex Cylinder, Radio Science 14, 419-435.

PEKERIS, C.L. [1947], The Field of a Microwave Dipole Antenna in the Vicinity

of the Horizon, Part 1, J. Appl. Phys. 18, 667-680.

PEKERIS, C.L. [1947], The Field of a Microwave Dipole Antenna in the Vicinity

of the Horizon, Part 2, J. Appl. Phys. 18, 1025-1027.

PIERCE, A.D. [1985], The Diffraction of" Sound over a Curved Surface. Private

Communication.

PIERCE, A.D. [1981], Acoustics: An Introduction to Its Physical Principles and

Applications, McGraw-Hill Book Co., New York.

PIERCE, A.D. [1974], Diffraction of Sound around Corners and over Wide Barriers,

J. Acoust. Soc. Am. 55, 941-955.

PIERCE, A.D. and W.J. HADDEN Jr. [1978], Plane Wave Diffraction by a Wedge

with Finite Impedance, J. Acoust. Soc. Am. 63, 17-27.

PIERCE, A.D. and W.J. HADDEN Jr. [1981], Sound Diffraction around Screens

and Wedges for Arbitrary Point Source Locations, J. Acoust. Soc. Am. 69,

1266-1276.

PIERCE, A.D. and G.L. MAIN [1987], Computational Algorithms for the Matched

Asymptotic Expansion solution of High Frequency Acoustic Wave Diffraction

by Curved Surfaces of Finite Impedance, in Advances in Computer Methods

for Partial Differential Equations * V'I, R. Vichnevetsky and R.S. Stepleman

eels., Inter. Assoc. for Math. and Comp. in Sire. (IMACS), New Brunswick,

New Jersey.



224

PIERCY, J.E., T.F.W. EMBLETON and L.C. SUTHERLAND [1977], Review of

Noise Propagation in the Atmosphere, J. Acoust. Soc. Am. 61, 1403-1418.

POGORZELSKI, R.J. [1982], A Note on Some Common Diffraction Link Loss Mod-

els, Radio Science 17 (6), 1536-1540.

POINCARE, H. [1910], Palermo Rendiconti 29, 169-260.

RASMUSSEN, K.B. [1983], Comments on "Precise Model Measurements versus
Theoretical Prediction of Barrier Insertion Loss in Presence of the Ground",

J. Acoust. Soc. Am. 74, 1299.

RUDNICK, I. [1947], The Propagation of an Acoustic Wave along a Boundary, J.

Acoust. Soc. Am. 19, 348-356.

SCHENSTED, C.E. [1955], Electromagnetic and Acoustical Scattering by a Semi-

Infinite Body of Revolution, J. Appl. Phys. 26, 306-308.

SCHOLES, W.E., A.C. SALVIDGE and J.W. SARGENT [1971], Field Performance

of a Noise Barrier, J. Sound Vib. 18, 627-642.

SERBEST, A.H. [1984], Diffraction Coefficients for a Curved Edge with Soft and

Hard Boundary Conditions, IEEE Proceedings 131 Pt. H (6), 383-389.

SHIRAHATTI, U.S. and M.L. MUNJAL [1987], Acoustic Characterization of Po-

rous Ceramic Tiles, Noise Control Engineering Journal 28 (1), 26-32.

SHUB, M. and S. SMALE [1986], Computational Complexity: On the Geometry of

Polynomials and a Theory of Cost: IT, SIAM J. Comput. 15 (1), 145-161.

SILVERMAN, R.A. [1972], Introductory Complez Anailtsis, Dover Publications,

Inc., New York.

SPENCE, R.D. [1949], A Note on the Kirchhoff Approximation in Diffraction The-

ory, J. Acoust. Soc. Am. 21, 98-100.

SOMMERFELD, A. and J. RUNGE [1911], Application of Vector Calculus to the

Fund_mentais of Geometrical Optics, Ann. Phys. ser. 4, vol. 35,277-298.

THOMASSON, S. [1978] , Diffraction by a Screen above an Impedance Bound-

ary, J. Acoust. Soc. Am. 63, 1768-1781.

TIBERIO, R. and R.G. KOUYOUMJIAN [1982], An Analysis of Diffraction at

Edges Illuminated by Transition Region Fields, Radio Science 17 (2), 323-336.



225

USLENGHI, P. [1964], Radar Cross Section of Imperfectly Conducting Bodies at

Small Wavelengths, Alta Frequenza 33, 541-546.

VAN DER POL, B. and H. BREMMER [1937], The Diffraction of Electromagnetic

Waves from an Electrical Point Source round a Finitely Conducting Sphere,

with Applications to Radiotelegraphy and the Theory of the Rainbow, Part 1,

Phil. Mag. 24, 141-176.

VAN DER POL, B. and H. BREMMER [1937], The Diffraction of Electromagnetic

Waves from an Electrical Point Source round a Finitely Conducting Sphere,

with Applications to Radiotelegraphy and the Theory of the Rainbow, Part 2,

Phil. Mag. 24, 825-864.

VAN DER POL, B. and H. BREMMER [19381, The Propagation of Radio Waves

over a Finitely Conducting Spherical Earth, Phil. Mag. S. 7 25,817-835.

VOGLER, L.E. [19821, An Attenuation Function for Multiple Knife-edge Diffrac-

tion, Radio Science 17 (6), 1541-1546.

WAIT, J.R. and A.M. CONDA [1958], Pattern of an Antenna on a Curved Lossy

Surface, IRE Trans. Ant. Prop. AP--8, 348-359.

WAIT, J.R. and A.M. CONDA [1959], Diffraction of Electromagnetic Waves by

Smooth Obstacles for Crazing Angles, J. Res. Nat. Bur. Stand. 63D, 181-197.

WAIT, J.R. [1960], On the Excitation of Electromagnetic Surface Waves on a

Curved Surface, IRE Trans. Ant. Prop. AP-8, 445-448.

WAIT, J.R. [1962], The Propagation of Electromagnetic Waves Along the Earth's

Surface, in: Electromagnetic Waves (ed.) R.E. Langer, University of Wisconsin

Press, Madison, Wisconsin.

WATSON, G.N. [1918], The Diffraction of Electric Waves by the Earth, Proc. Roy.

Soc. A95, 83-99.

WATSON, G.N. [1944], A Treatise on the Theory of Besscl Functions, Second Ed.,

Cambridge University Press, London.

WESTON, V.H. [1962], The Effect of a Discontinuity in Curvature in High Fre-

quency Scattering, IRE Trans. Ant. Prop. AP-10, 775-780.

WENZEL, A.R. I1974], Propagation of Waves Along an Impedance Boundary, J.

Acoust. Soc. Am. 55,956-963.



226

WEST, M., F. WALKDEN and R.A. SACK [1989], The Acoustic Shadow Produced

by Wind Speed and Temperature Gradients Close to the Ground, Applied

Acoustics 2'/', 239-260.

WESTON, V.H. [1965], Extension of Fock Theory for Currents in the Penumbra

Region, Radio Science 69D, 1257-1270.

WHITE, F.P. [1922], The Diffraction of Plane Electromagnetic Waves by a Perfectly

Reflecting Sphere, Proc. Roy. Soc. A100, 505-525.

WRIGHT, W.M. [1983], Propagation in Air of N Waves Produced by Sparks,

J. Acoust. Soc. Am. 73 (6), 1948-1955.

WRIGHT, W.M. and J.L. McKITTRICK [1967], Diffraction of Spark-produced

Acoustic Impulses, Am. J. Phys. 35, 124-128.

WILKEN, W. and J. WEMPEN [1986 l, An FFT-Based High Resolution Measuring

Technique with Application to Outdoor Ground Impedance at Grazing Inci-

dence, Noise Control Engineering Journal 27 (2), 52--60.

ZWIKKER C. and C.W. KOSTEN [1949], Sound Absorbing Materials, Elsevier

Publishing Company, Inc., New York.



227

PAPERS AND PUBLICATIONS

PIERCE, A.D., G.L. MAIN, J.A. KEARNS, D.R. BENATOR and J.R. PARISH

Jr. [1986], Sound Propagation over Uneven Ground and Irregular Topography,

Semiannual Status Report No. 2, NASA Grant NAG-I-566, Georgia Institute

of Technology, Atlanta, Georgia.

KEARNS, J.A., A.D. PIERCE, and G.L. MAIN [1986], Sound Propagation over

Uneven Ground and Irregular Topography, Semiannual Status Report No. 3,

NASA Grant NAG-I-566, Georgia Institute of Technology, Atlanta, Georgia.

BERTHELOT, Y.H., J.A. KEARNS, A.D. PIERCE, and G.L. MAIN [1987], Sound

Propagation over Uneven Ground and Irregular Topography, Semiannual Sta-

tus Report No. 4, NASA Grant NAG-I-566, Georgia Institute of Technology,

Atlanta, Georgia.

BERTHELOT, Y.H., A.D. PIERCE, JLXUN ZHOU, G.L. MAIN, PEI-TAI CHEN,

J.A. KEARNS, and N. CHISHOLM [1987], Sound Propagation over Uneven

Ground and Irregular Topography, Semiannual Status Report No. 5, NASA

Grant NAG-I-566, Georgia Institute of Technology, Atlanta, Georgia.

PIERCE, A.D., G.L. MAIN, J.A. KEARNS and H.-A. HSIEH [1986], Curved Sur-

face Diffraction Theory derived and extended using the Method of Matched

Asymptotic Expansions, paper presented at the 111 th mtg. Acoust. Soc. Am.,

Cleveland, Ohio (abs. in J. Acoust. Soc. Am. Suppl. 1, '/9 $30-31).

PIERCE, A.D., G.L. MAIN, J.A. KEARNS, and H.-A. HSIEH [1986], Sound Prop-

agation over Curved Barriers, in Progress in Noise Control, Proceedings Inter-

Noise 86, R. Lotz ed., vol. 1, Poughkeepsie, New York.

PIERCE, A.D., G.L. MAIN, J.A. KEARNS, D.R. BENATOR and J.R. PARISH

Jr. [1986], Sound Propagation over Large Smooth Ridges in Ground Topogra-

phy, in Proceedings of the 12 th International Congress on Acoustics, T.F.W.

Embleton eta/. eds., vol. 3, Toronto, Canada.



228

BERTHELOT, Y.H., A.D. PIERCE, J.A. KEARNS, and G.L. MAIN [1987], Dif-

fraction of Sound by a Smooth Ridge, in Proceedings of NOISE-CON '87: High

Technology for Noise Control, J.R. Tichy and S. Hayek eds., New York.

BERTHELOT, Y.H., A.D. PIERCE, and J.A. KEARNS [1987], Experiments on the

Applicability of MAE Techniques for Predicting Sound Diffraction by Irregular

Terrains, presented at AIAA Aeroacoustics Conference, session on Computa-

tional Aeroacoustics, Palo Alto, California.

ZHOU, J.-X., J.A. KEARNS, Y.H. BERTHELOT, and A.D. PIERCE [1987], The

Effect of Finite Surface Acoustic Impedance on Sound Fields near a Smooth

Diffracting Ridge, presented at 113 _h mtg. Acous. Soc. Am., Miami, Florida.

KEARNS, J.A., J.-X. ZHOU, Y.H. BERTHELOT and A.D. PIERCE [1988], Com-

putational Studies of the Diffraction Integral occurring in the MAE Theory of

Sound Propagation over Hills and Valleys, presented at 115 th mtg. of Acoust.

Soc. Am., Seattle, WA (abs. in J. Acoust. Soc. Am. Suppl. 1, 83, QQ6).


